Válasz:
A 6 vagy 7 összeg összege valószínűsége
Magyarázat:
Ha két dobókocka dob, van
Ezek közül az eredmények
Ezért vannak
Ennélfogva a 6 vagy 7 összeg összege valószínű
Az eső valószínűsége holnap 0,7. Az eső valószínűsége a következő nap 0,55, az eső valószínűsége pedig 0,4. Hogyan határozza meg a P-t ("két vagy több napot fog esni a három nap alatt")?
577/1000 vagy 0,577 Mivel a valószínűségek maximum 1-et adnak: Az első nap valószínűsége, hogy nem eső = 1-0,7 = 0,3 Második nap valószínűsége, hogy nem eső = 1-0,55 = 0,45 Harmadik nap valószínűsége, hogy nem eső = 1-0,4 = 0.6 Ezek az eső különböző lehetőségei 2 nap: R az eső, az NR nem az eső. szín (kék) (P (R, R, NR)) + szín (piros) (P (R, NR, R)) + szín (zöld) (P (NR, R, R)) Ennek kiszámítása: szín (kék ) (P (R, R, NR) = 0.7xx0.55xx0.6 = 231/1000 szín (piros) (P (R, NR, R) = 0.7xx0
Mindegyik kocka mindegyikének van olyan tulajdonsága, hogy a 2 vagy a 4 háromszor olyan valószínű, hogy mindegyik tekercsen 1, 3, 5 vagy 6-nak tűnik. Mekkora a valószínűsége annak, hogy egy 7 lesz az összeg, amikor a két kockát dobják?
A 7-es görgetés valószínűsége 0,14. Legyen x egyenlő azzal a valószínűséggel, hogy a 1-et tekerje. Ez ugyanaz a valószínűség, mint a 3, 5 vagy 6 gördülő. A 2 vagy 4 gördülési valószínűsége 3x. Tudjuk, hogy ezeknek a valószínűségeknek hozzá kell adniuk az egyiket, így az 1 + valószínűsége annak, hogy a 2 + a gördülési valószínűségét a 3 + a valószínűsége annak, hogy a 4 + gördüljön, a valószínűsége annak, hogy a
Sok éven át 15 órakor tanulmányozta, hogy hányan várják a bankban a sorban tartózkodó embereket, és valószínűsített eloszlást hozott létre a 0, 1, 2, 3 vagy 4 fő számára. A valószínűségek 0,1, 0,3, 0,4, 0,1 és 0,1. Mekkora a valószínűsége annak, hogy legalább 3 ember sorban van péntek délután 15 órakor?
Ez egy MINDEN ... VAGY helyzet. Hozzáadhatja a valószínűségeket. A feltételek exkluzívak, vagyis: nem lehet 3 és 4 fő egy sorban. 3 ember vagy 4 ember van sorban. Add hozzá: P (3 vagy 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Ellenőrizze a választ (ha van ideje a teszt során), az ellenkező valószínűség kiszámításával: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 És ez és a válasz 1,0-ig terjed, ahogy kellene.