Legyen A (x_a, y_a) és B (x_b, y_b) két pont a síkban, és hagyja, hogy P (x, y) legyen az a pont, amely osztja a sávot (AB) k: 1 arányban, ahol k> 0. Mutassa meg, hogy x = (x_a + kx_b) / (1 + k) és y = (y_a + ky_b) / (1 + k)?
Lásd az alábbi bizonyítékot Kezdjük a vec (AB) és a vec (AP) kiszámításával. Az x vec (AB) / vec (AP) = (k + 1) / k (x_b-x_a) / (x-x_a) = (k + 1) / k Szorzás és átrendezés (x_b-x_a) (k) = (x-x_a) (k + 1) x (k + 1) x = kx_b-kx_a + kx_a + x_a (k + 1) megoldása ) x = x_a + kx_b x = (x_a + kx_b) / (k + 1) Hasonlóképpen az y (y_b-y_a) / (y-y_a) = (k + 1) / k ky_b-ky_a = y (k +1) - (k + 1) y_a (k + 1) y = ky_b-ky_a + ky_a + y_a y = (y_a + ky_b) / (k + 1)
Legyen kalap (ABC) bármilyen háromszög, nyúlvány (AC) és D között, így a sáv (CD) bar (CB); húzza meg a sávot (CB) az E-ba, úgy, hogy a bar (CE) bar (CA). A szegmensek (DE) és a bár (AB) találkoznak az F.-nál. Mutassa meg, hogy a kalap (DFB egyenlő)?
Az alábbiakban: Ref: Adott ábra "In" DeltaCBD, bár (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Újra a" DeltaABC és DeltaDEC sávban (CE) ~ = bar (AC) -> "az építés szerint "bár (CD) ~ = bar (CB) ->" az építéssel "" És "/ _DCE =" függőlegesen ellentétes "/ _BCA" Ezért "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Most a "DeltaBDF-ben, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "Szóval" sáv (FB) ~ = bar (FD) =>
A részecske az x-tengely mentén mozog, oly módon, hogy a t időpontban lévő pozícióját x (t) = (2-t) / (1-t) adja meg. Mi a részecske gyorsulása t = 0 időpontban?
2 "ms" ^ - 2 a (t) = d / dt [v (t)] = (d ^ 2) / (dt ^ 2) [x (t)] x (t) = (2-t) / (1-t) v (t) = d / dt [(2-t) / (1-t)] = ((1-t) d / dt [2-t] - (2-t) d / dt [1-t]) / (1-t) ^ 2 = ((1-t) (- 1) - (2-t) (- 1)) / (1-t) ^ 2 = (T-1 + 2-t) / (1-t) ^ 2 = 1 / (1-t) ^ 2a (t) = d / dt [(1-t) ^ - 2] = - 2 (1-t) ^ - 3 * d / dt [1-t] = - 2 (1-t) ^ - (1) = 2 / (1-t) ^ a (0) = 2 / (1-0) ^ 3 = 2/1 ^ 3 = 2/1 = 2 "MS" ^ - 2