Mutassa meg, hogy (b ^ 2-c ^ 2) * cotA + (c ^ 2-a ^ 2) * cotB + (a ^ 2-b ^ 2) * cotC = 0?

Mutassa meg, hogy (b ^ 2-c ^ 2) * cotA + (c ^ 2-a ^ 2) * cotB + (a ^ 2-b ^ 2) * cotC = 0?
Anonim

Szinuszjog által tudjuk

# A / Sina = b / SINB = c / SINC = 2R #

Most

1. rész

# (B ^ 2-c ^ 2) Cota #

# = (4R ^ 2sin ^ 2B-4R ^ 2sin ^ 2C) Cota #

# = 4R ^ 2 (1/2 (1-cos2B) -1/2 (1-cos2C) Cota #

# = 4R ^ 2xx1 / 2 (cos2C-cos2B) Cota #

# = 2R ^ 2xx2sin (B + C) sin (B-C) cosa / Sina #

# = 4R ^ 2sin (pi-A) sin (B-C) cosa / Sina #

# = 4R ^ 2sinAsin (B-C) cosa / Sina #

# = 4R ^ 2sin (B-C) cosa #

# = 4R ^ 2 (sinBcosCcosA-cosBsinCcosA) #

Hasonlóképpen

2. rész # = (C ^ 2-a ^ 2) cotB #

# = 4R ^ 2 (sinCcosAcosB-cosCsinAcosB) #

3. rész # = (A ^ 2-b ^ 2) cotC #

# = 4R ^ 2 (sinAcosBcosC-cosAsinBcosC) #

Három rész hozzáadásával kapunk

Egész kifejezés

# (B ^ 2-c ^ 2) Cota + (c ^ 2-a ^ 2) cotB + (a ^ 2-b ^ 2) cotC = 0 #