Jay bankszámlája 3,667,50 dolláros egyenleget tartalmazott. Eredetileg megnyitotta a fiókot 3 070 dolláros betét 2 0/4 évvel ezelőtt. Ha nincs betét vagy visszavonás, mi volt az egyszerű kamatláb (a legközelebbi század százaléka)?

Jay bankszámlája 3,667,50 dolláros egyenleget tartalmazott. Eredetileg megnyitotta a fiókot 3 070 dolláros betét 2 0/4 évvel ezelőtt. Ha nincs betét vagy visszavonás, mi volt az egyszerű kamatláb (a legközelebbi század százaléka)?
Anonim

Válasz:

Lásd lentebb.

Magyarázat:

Ha csak a teljes kamat százalékát kívánja 2,25 év után.

# 3667,50 / 3070xx100% = 119,46% #

100% -kal kezdtük, ez 3070 dollár volt.

Az extra összeg:

#19.56%#

Az alábbiakban egy reálisabb választ adunk, mivel a kamatokat meghatározott időszakokban számítják ki. Gyakran havonta, negyedévente vagy évente.

A kamat a 2,25 év után:

Az összetett kamatok képletét évente 1 vegyülettel használhatjuk.

# FV = PV (1 + r / n) ^ (nt) #

Hol:

# FV = "jövőbeli érték" #

# PV = "főérték" #

# r = "kamatláb tizedes" #

# n = "összetételi időszak" #

# t = "idő években" #

A jövőbeni értékünk az, ami most van. $ 3.667,50

Fő értékünk az, amit 3070,00 dollárral kezdtünk

Összetett időszak #1# azaz évente egyszer.

Az idő 2,25 év.

Meg kell találnunk # # BBR, a kamatláb.

Ismert értékek elhelyezése:

# 3667,50 = 3070 (1 + r / 1) ^ (2,25) #

# 3667,50 / 3070 = (1 + r) ^ (2,25) #

#ln (3667,50 / 3070) = 2.25ln (1 + r) #

# (Ln (3667,50 / 3070)) / 2,25 = ln (1 + r) #

# Y = ln (b) => e ^ y = b #

Ez az ötlet. Emel # # BBE mindkét oldal erejéig:

#e ^ ((ln (3667,50 / 3070)) / 2,25) = e ^ (ln (1 + r)) #

# R = (3667,50 / 3070) ^ (1 / 2,25) -1 #

Ez tizedes formában van, így megszorozva 100-mal.

#8.22%# százalékban.