Bizonyított
A 3. lépésben a következő képleteket használjuk
és
Válasz:
Kérjük, olvassa el a magyarázatot. A bizonyítás minden lépését a www.WolframAlpha.com címen megerősítettem
Magyarázat:
Szorozzuk mindkét oldalt
Helyettes
Szorozza a négyzetet:
A -3:
Kombinálja a következő kifejezéseket:
Oszd mindkét oldalt 2-re:
Helyettes
Bontsa ki a kockát:
A -1 elosztása:
Kombinálja a következő kifejezéseket:
A jobb a bal oldali. Q.E.D.
A természetes számot csak 0, 3, 7 írja. Bizonyítsuk be, hogy egy tökéletes négyzet nem létezik. Hogyan bizonyíthatom ezt az állítást?
A válasz: Minden tökéletes négyzet vége 1, 4, 5, 6, 9, 00 (vagy 0000, 000000 stb.) Egy szám, amely 2-es, színes (piros) 3, színes (piros) 7, 8 és csak szín (piros) 0 nem tökéletes négyzet. Ha a természetes szám ezekből a három számból áll (0, 3, 7), elkerülhetetlen, hogy a számnak az egyikben kell véget érnie. Olyan volt, mintha ez a természetes szám nem lehet tökéletes tér.
Bizonyítsuk be, hogy a ^ 3 + b ^ 3 + c ^ 3-3abc = (a + b + c) (a ^ 2 + b ^ 2 + c ^ 2-ab-bc-ca). Hogyan oldhatom meg ezt anélkül, hogy mindent kibővítenék? Kösz
Kérjük, olvassa el a magyarázatot. Ismeretes, hogy (a + b) ^ 3 = a ^ 3 + b ^ 3 + 3ab (a + b). :. a ^ 3 + b ^ 3 = (a + b) ^ 3-3ab (a + b) ............................ ..(csillag). Beállítás, (a + b) = d, "van," a ^ 3 + b ^ 3 = d ^ 3-3abd. :. ul (a ^ 3 + b ^ 3) + c ^ 3-3cc, = d ^ 3-3abd + c ^ 3-abc, = ul (d ^ 3 + c ^ 3) -ul (3abd-3abc), = ul ((d + c) ^ 3-3dc (d + c)) - 3ab (d + c) ............ [mert (csillag)], = (d + c) ^ 3-3 (d + c) (dc + ab), = (d + c) {(d + c) ^ 2-3 (dc + ab)}, = (d + c) {d ^ 2 + 2dc + c ^ 2-3dc-3ab}, = (d + c) {d ^ 2 + c ^ 2-dc-3ab}, = (a + b + c) {(a + b) ^ 2 +
Bizonyítsuk be, hogy adott sor és pont nem ezen a vonalon, pontosan egy vonal van, amely ezen a ponton merőleges ezen a ponton? Ezt matematikailag vagy építés útján teheti meg (az ókori görögök)?
Lásd lentebb. Tegyük fel, hogy az adott vonal AB, és a pont P, amely nem az AB-n. Most, Tegyük fel, merőleges PO-t húztunk AB-re. Meg kell bizonyítanunk, hogy ez a PO az egyetlen olyan vonal, amely áthalad az AB-re merőleges P-n. Most építkezést fogunk használni. Készítsünk egy másik merőleges PC-t az AB-től a P. Now The Proof ponttól. Van, az AB perpendikuláris AB [nem használhatom a merőleges jelet, az annyoing-t], valamint a PC perpendicular AB-t is. Tehát, OP || PC-n. [Mindkettő merőleges ugyanazon a vonalon.] Most mind az OP