# 9 = e ^ (y ^ 2-y) / e ^ x + y - xy #
# 9 = e ^ (y ^ 2-y) * e ^ (- x) + y - xy #
# 9 = e ^ (y ^ 2-y-x) + y - xy #
Különbözze az x-et.
Az exponenciális származék maga az exponens deriváltja. Ne feledje, hogy amikor megkülönböztetsz valamit, ami y-t tartalmaz, a láncszabály y tényezőt ad.
# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - (xy '+ y) #
# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - xy'-y #
Most oldja meg az y '-et. Itt van egy kezdet:
# 0 = 2yy'e ^ (y ^ 2-y-x) -y'e ^ (y ^ 2-y-x) -e ^ (y ^ 2-y-x) + y '- xy'-y #
Szerezd meg az összes kifejezést, amelynek y 'van a bal oldalán.
# -2yy'e ^ (y ^ 2-y-x) + y'e ^ (y ^ 2-y-x) - y '+ xy' = - e ^ (y ^ 2-y-x) -y #
Y tényező.
Oszd meg mindkét oldalt a zárójelben lévő tényező után.