Mi a 3x ^ 2 + 1x + 2y + 7 = 0 által leírt parabola fókusz és csúcsa?

Mi a 3x ^ 2 + 1x + 2y + 7 = 0 által leírt parabola fókusz és csúcsa?
Anonim

Válasz:

A Vertex van # =(-1/6, -83/24)# A fókusz a # (-1/6,-87/24)#

Magyarázat:

# 2y = -3x ^ 2-x-7 vagy y = -3/2 x ^ 2-x / 2-7 / 2 = -3 / 2 (x ^ 2 + x / 3 + 1/36) + 1 / 24-7 / 2 = -3/2 (x + 1/6) ^ 2-83 / 24 # A Vertex van # =(-1/6, -83/24)# A parabola együttmûködik # X ^ 2 # negatív. a csúcs és a fókusz közötti távolság # 1 / | 4a | = 1 / (4 * 3/2) = 1/6 # Ezért a hangsúly a # -1/6, (- 83 / 24-1 / 6) vagy (-1 / 6, -87 / 24) # grafikon {-3 / 2x ^ 2-x / 2-7 / 2 -20, 20, -10, 10} Ans