Válasz:
Magyarázat:
Keresse meg a két pontot összekötő vonal meredekségét.
merőleges vonalak: a lejtőik termékei
Az egyik lejtő a másik negatív viszonya.
(Ez azt jelenti, hogy megfordítja és megváltoztatja a jelet.)
A merőleges vonal meredeksége
Válasz:
+5
Magyarázat:
Ne feledje, hogy szándékosan nem helyezték el a pontok sorrendjét, hogy megfeleljenek azoknak, amelyeket általában olvasni szeretnének. Balra jobbra az x tengelyen.
Állítsa balra a legtöbb pontot
Állítsa be a legpontosabban pontot
Tegyük fel, hogy az adott vonal lejtése
A balról jobbra olvasás:
Az adott vonal lejtése:
A merőleges vonal meredeksége:
Válasz:
Meredekség = 5
Magyarázat:
Először is ki kell számolnunk a vonal gradiensét / lejtését.
Megengedem
és
Van egy szabály, amely kimondja
Ha hagyom
azután
Ezért a meredekség 5
Mekkora az egyenlet az (-1,1) -en áthaladó és az alábbi pontokon áthaladó vonalra merőleges vonal: (13,1), (- 2,3)?
15x-2y + 17 = 0. A P (13,1) & Q (-2,3) pontokon áthaladó vonal m 'értéke m' = (1-3) / (13 - (- 2)) = - 2/15. Tehát, ha a lejtőn a reqd. a vonal m, mint a reqd. A vonal a PQ vonalhoz tartozó bot, mm '= - 1 rArr m = 15/2. Most használjuk a Slope-Point Formulát a reqd számára. vonal, amelyről ismert, hogy áthalad a ponton (-1,1). Így az eqn. a reqd. vonal, y-1 = 15/2 (x - (- 1)), vagy 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.
Mi az egyenlet az (-1,3) -on áthaladó vonalról, és merőleges a következő pontokon áthaladó vonalra: (6, -4), (5,2)?
Végső válasz: 6y = x + 19 oe. A ((1), (3), mint l_1-et áthaladó sor meghatározása. A b: (6, -4), c: (5, 2) mint l_2-et áthaladó vonal meghatározása. Keresse meg az l_2 gradiensét. m_2 = (y_b-y_c) / (x_b-x_c) = (- 4-2) / (6-5) = - 6 l_2_ | _l_1 Tehát m_1 = -1 / m_2 = -1 / -6 = 1/6 egyenlet l_1: y-y_a = m_1 (x-x_a) y-3 = 1/6 (x + 1) 6y-18 = x + 1 6y = x + 19 Vagy azonban azt szeretné, hogy elrendezze.
Mi az egyenlet az (-1,3) -on áthaladó vonalról, és merőleges a következő pontokon áthaladó vonalra: (- 2,4), (- 7,2)?
Nézze meg az alábbi megoldási folyamatot: Először meg kell találnunk a vonal (2, 4) és (-7, 2) áthaladó vonalának lejtését. A meredekség a következő képlettel érhető el: m = (szín (piros) (y_2) - szín (kék) (y_1)) / (szín (piros) (x_2) - szín (kék) (x_1)) ahol m van a lejtő és a (szín (kék) (x_1, y_1)) és (szín (piros) (x_2, y_2)) a vonal két pontja. Az értékek helyettesítése a probléma pontjairól: m = (szín (piros) (2) - szín (kék) (4)) / (sz