Egy egyenlőszárú háromszög két sarka (9, 6) és (4, 7). Ha a háromszög területe 64, milyen hosszúságú a háromszög oldala?

Egy egyenlőszárú háromszög két sarka (9, 6) és (4, 7). Ha a háromszög területe 64, milyen hosszúságú a háromszög oldala?
Anonim

Válasz:

A háromszög három oldalának hossza #5.1,25.2, 25.2# egység.

Magyarázat:

Az isocelles háromszög alapja # B = sqrt ((x_1-x_2) ^ 2 + (y_1-y_2) ^ 2)) #

# = sqrt ((9-4) ^ 2 + (6-7) ^ 2)) = sqrt (25 + 1) = sqrt26 = 5,1 (1dp) # egység

Tudjuk, hogy a háromszög területe #A_t = 1/2 * B * H # Hol # H # a magasság.

#:. 64 = 1/2 * 5,1 * H vagy H = 128 / 5,1 = 25,1 (1dp) #egység

A lábak #L = sqrt (H ^ 2 + (B / 2) ^ 2) #

# = sqrt (25,1 ^ 2 + (5,1 / 2) ^ 2) = 25,2 (1dp) #egység

A háromszög három oldalának hossza #5.1,25.2, 25.2# egység Ans