Hogyan oldja meg a sin3x = cos3x megoldást?

Hogyan oldja meg a sin3x = cos3x megoldást?
Anonim

Válasz:

Használat #tan 3x = (sin 3x) / (cos 3x) = 1 # megtalálni:

#x = pi / 12 + (n pi) / 3 #

Magyarázat:

enged #t = 3x #

Ha #sin t = cos t # azután #tan t = sin t / cos t = 1 #

Így #t = arctan 1 + n pi = pi / 4 + n pi # bármilyen #n a ZZ-ben

Így #x = t / 3 = (pi / 4 + n pi) / 3 = pi / 12 + (n pi) / 3 #

Válasz:

Megoldjuk a sin 3x = cos 3x értéket

Válasz: #x = pi / 12 + Kpi / 3 #

Magyarázat:

Használja a kiegészítő ívek kapcsolatát:# cos x = sin (pi / 2 - x) #

#sin 3x = sin (pi / 2 - 3x) #

a. # 3x = pi / 2 - 3x # + 2Kpi -> # 6x = pi / 2 + 2Kpi -> #

#x = pi / 12 + Kpi / 3 #

Intervallumon belül# (0,2pi) # 6 válasz van: # pi / 12; (5pi) / 12; (9pi) / 12; (13pi) / 12; (17pi) / 12; és (21pi) / 12.#

b. # 3x = pi - (pi / 2 - 3x) = pi / 2 + 3x. Ez az egyenlet meghatározatlan.

Jelölje be

#x = pi / 12 -> sin 3x = sin pi / 4 = sqrt2 / 2 #

#x = pi / 12 -> cos 3x = cos pi / 4 = sqrt2 / 2 #

Ezért a sin 3x = cos 3x:

Ellenőrizheti más válaszokat.

Válasz:

#x = {(pi / 12 + (2pik) / 3), ("" szín (fekete) és), (- pi / 4 + (2pik) / 3):} #

# # KinZZ

Magyarázat:

Itt van egy másik módszer, amelynek saját felhasználása van.

Először küldj minden dolgot az egyik oldalra

# => Sin (3x) -cos (3x) = 0 #

Ezután kifejezzük # Sin3x-cos3x # mint #Rcos (3x + lambda) #

# R # pozitív valós és # # Lambda szög

# => sin (3x) -cos (3x) = Rcos (3x + lambda) #

# => - cos (3x) + sin (3x) = Rcos (3x) coslambda-Rsin (3x) sinlambda #

Egyenlő a. T # # Cosx és # # Sinx mindkét oldalon

# => "" Rcoslambda = -1 "" … szín (piros) ((1)) #

# "" -Rsinlambda = 1 "" … szín (piros) ((2)) #

#COLOR (piros) (((2)) / ((1))) => - (- Rsinlambda) / (Rcoslambda) = 1 / (- 1) #

# => Tanlambda = 1 => lambda = pi / 4 #

#color (piros) ((1) ^ 2) + szín (piros) ((2) ^ 2) => (Rcoslambda) ^ 2 + (- Rsinlambda) ^ 2 = (- 1) ^ 2 + (1) ^ 2 #

# => R ^ 2 (cos ^ 2lambda + sin ^ 2lambda) = 2 #

# => R ^ 2 (1) = 2 => R = sqrt (2) #

Így, #sin (3x) -cos (3x) = sqrt (2) cos (3x + pi / 4) = 0 #

# => Cos (3x + pi / 4) = 0 #

# => 3x + pi / 4 = + - pi / 2 + 2pik #

Hol # # KinZZ

csinál #x# a téma

# => X = + - pi / 6-pi / 12 + 2pik #

Tehát két megoldássorozatot:

#color (kék) (x = {(pi / 12 + (2pik) / 3), ("" szín (fekete) és), (- pi / 4 + (2pik) / 3):}) #

Amikor # K = 0 => x = pi / 12 + (2pi (0)) / 3 = pi / 12 #

és # X = -pi / 4 + (2pi (0)) / 3 = -pi / 4 #

Amikor # K = 1 => x = pi / 12 + (2pi) / 3 = (9pi) / 12 = (3pi) / 4 #

és # X = -pi / 4 + (2pi) / 3 = (5pi) / 12 #