Mi az f (x) = ln (ln ((x + 4) / ln (x ^ 2 + 4)) függvény származéka?

Mi az f (x) = ln (ln ((x + 4) / ln (x ^ 2 + 4)) függvény származéka?
Anonim

Válasz:

#f '(x) = (1 / (ln (x + 4) / (ln (x ^ 2 + 4))))) ((1) / ((x + 4))) (((x) ^ 2 + 4) (ln (x ^ 2 + 4)) - (2x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)))) #

Magyarázat:

#f '(x) = (1 / (ln (x + 4) / (ln (x ^ 2 + 4))))) (1 / (x + 4) / (ln (x ^ 2 + 4)))). (((1) (ln (x ^ 2 + 4)) - (x + 4) (1) / ((x ^ 2 + 4)) (2x)) / ((ln (x ^ 2 + 4))) ^ 2) #

#f '(x) = (1 / (ln (x + 4) / (ln (x ^ 2 + 4))))) (ln (x ^ 2 + 4) / ((x + 4))). ((ln (x ^ 2 + 4) - (2x ^ 2 + 4x) / ((x ^ 2 + 4))) / ((ln (x ^ 2 + 4))) ^ 2) #

#f '(x) = (1 / (ln (x + 4) / (ln (x ^ 2 + 4))))) (törlés (ln (x ^ 2 + 4)) / ((x + 4))). (((x ^ 2 + 4) (ln (x ^ 2 + 4)) - (2x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)) ^ megszünteti (2))) #

#f '(x) = (1 / (ln (x + 4) / (ln (x ^ 2 + 4))))) ((1) / ((x + 4))) (((x) ^ 2 + 4) (ln (x ^ 2 + 4)) - (2x ^ 2 + 4x)) / ((x ^ 2 + 4) (ln (x ^ 2 + 4)))) #