Válasz:
A számok
Magyarázat:
Legyen a számok
Kisebb kettő összege, azaz
vagy
vagy
vagy
azaz
és számok
Három egymást követő páratlan egész szám olyan, hogy a harmadik egész szám négyzetének értéke 345-rel kisebb, mint az első kettő négyzetének összege. Hogyan találja meg az egész számokat?
Két megoldás létezik: 21, 23, 25 vagy -17, -15, -13 Ha a legkisebb egész szám n, akkor a többiek n + 2 és n + 4 A kérdés értelmezése: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345, amely kiterjed: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 szín (fehér) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Az n ^ 2 + 8n + 16 kivonása mindkét végén: 0 = n ^ 2-4n-357 szín (fehér) (0) = n ^ 2-4n + 4 -361 szín (fehér) (0) = (n-2) ^ 2-19 ^ 2 szín (fehér) (0) = ((n-2) -19) ((n-2) +19) szín (fehér ) (0) = (n-21) (n + 17) Tehá
Ismerve a képletet az N egész számok összegére a) mi az összege az első N egymást követő négyzetes egész számból, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Az első N egymást követő kocka egész számok összege Sigma_ (k = 1) ^ N k ^ 3?
S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Összeg_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 összeg_ {i = 0} ^ ni ^ 3 = összeg_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + összeg_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ n + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 az összegzéshez {i = 0} ^ ni ^ 2 összeg_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, de az összeg_ {i = 0} ^ ni = ((n + 1) n) / 2 &
"Léna 2 egymást követő egész számot tartalmaz.Megjegyzi, hogy összege megegyezik a négyzetek közötti különbséggel. Lena újabb 2 egymást követő egész számot választ, és ugyanezt észrevette. Bizonyítsuk be algebrai módon, hogy ez igaz minden 2 egymást követő egész számra?
Kérjük, olvassa el a magyarázatot. Emlékezzünk vissza, hogy az egymást követő egész számok 1-től eltérnek. Ha tehát m egy egész szám, akkor a következő egész számnak n + 1-nek kell lennie. E két egész szám összege n + (n + 1) = 2n + 1. A négyzetük közötti különbség (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, kívánt esetben! Érezd a matematika örömét!