Válasz:
Magyarázat:
Szinuszos egyenletben
Így amikor
Az f (x) = (x + 2) (x + 6) függvény grafikonja az alábbiakban látható. Milyen állítás van a függvényről? A függvény minden x valós értékre pozitív, ahol x> –4. A függvény negatív minden x valós értékre, ahol –6 <x <–2.
A függvény negatív minden x valós értékre, ahol –6 <x <–2.
Az f (x) függvény nullái 3 és 4, míg a második g (x) függvény nullái 3 és 7. Mi az y = f (x) / g függvény nullája (i)? )?
Csak y = f (x) / g (x) nulla értéke 4. Az f (x) függvény nullái 3 és 4, ez az eszköz (x-3) és (x-4) f (x ). Továbbá a második g (x) függvény nullái 3 és 7, amelyek (x-3) és (x-7) eszközök f (x) tényezői. Ez azt jelenti, hogy az y = f (x) / g (x) függvényben, bár (x-3) meg kell szüntetni, a g (x) = 0 nevező nincs megadva, ha x = 3. Azt is nem definiáljuk, ha x = 7. Ezért van egy lyuk x = 3. és csak y = f (x) / g (x) nulla értéke 4.
Az alfa paraméter értéke [0, 2pi] esetén, amelyre a kvadratikus függvény, (sin alpha) x ^ 2 + 2 cos alpha x + 1/2 (cos alpha + sin alpha) a lineáris függvény négyzete. ? (A) 2 (B) 3 (C) 4 (D) 1
Lásd lentebb. Ha tudjuk, hogy az expressziónak lineáris formának kell lennie, akkor (sin alpha) x ^ 2 + 2 cos alpha x + 1/2 (cos alpha + sin alpha) = (ax + b) ^ 2, majd csoportosítási együtthatókat (alfa ^ 2-sin (alfa)) x ^ 2 + (2ab-2cos alfa) x + b ^ 2-1 / 2 (sinalpha + cosalpha) = 0, így a feltétel {(a ^ 2-sin (alfa) ) = 0), (ab-cos alpha = 0), (b ^ 2-1 / 2 (sinalpha + cosalpha) = 0):} Ez megoldható az a, b és helyettesítő értékek először. Tudjuk, hogy a ^ 2 + b ^ 2 = sin alpha + 1 / (sin alpha + cos alpha) és a ^ 2b ^ 2 = cos ^ 2 alpha