A háromszögnek (-6, 3), (3, -2) és (5, 4) sarkai vannak. Ha a háromszöget a # (- 2, 6) pont 5-ös tényezőjével tágítják, milyen messzire mozog a centroidja?

A háromszögnek (-6, 3), (3, -2) és (5, 4) sarkai vannak. Ha a háromszöget a # (- 2, 6) pont 5-ös tényezőjével tágítják, milyen messzire mozog a centroidja?
Anonim

Válasz:

A centroid kb # d = 4 / 3sqrt233 = 20,35245 "" #egységek

Magyarázat:

Van egy háromszög, amelynek csúcsai vagy sarkai vannak a pontokon #A (-6, 3) #és #B (3, -2) # és #C (5, 4) #.

enged #F (x_f, y_f) = F (-2, 6) "" #a rögzített pontot

Számítsa ki a centroidot #O (x_g, y_g) # ennek a háromszögnek a neve

# X_g = (x_a + x_b + x_c) / 3 = (- 6 + 3 + 5) / 3 = 2/3 #

# Y_g = (y_a + y_b + y_c) / 3 = (3 + (- 2) +4) / 3 = 5/3 #

Súlypont #O (x_g, y_g) = O (2/3, 5/3) #

Számolja ki a nagyobb háromszög centroidját (skálafaktor = 5)

enged #O '(x_g', y_g ') = #a nagyobb háromszög centroidja

a működő egyenlet:

# (FO ') / (FO) = 5 #

megoldani # X_g '#:

# (X_g '- 2) / (2 / 3--2) = 5 #

# (X_g '+ 2) = 5 * 8/3-#

# X_g '= 40 / 3-2 #

# X_g '= 34/3 #

megoldani # Y_g '#

# (Y_g'-6) / (5 / 3-6) = 5 #

# Y_g '= 6 + 5 (-13 / 3) = (18-65) / 3 #

#y_g '= - 47/3 #

Számítsuk ki most a centroid O (2/3, 5/3) és az új centroid O '(34/3, -47/3) közötti távolságot.

# D = sqrt ((x_g-x_g ') ^ 2+ (y_g-y_g') ^ 2) #

# D = sqrt ((2 / 3-34 / 3') ^ 2+ (5 / 3--47 / 3) ^ 2) #

# D = sqrt ((- 32/3) ^ 2 + (52/3) ^ 2) #

# D = sqrt (((- 4 * 8) / 3) ^ 2 + ((4 * 13) / 3) ^ 2) #

# D = 4/3 * sqrt (64 + 169) #

# D = 4/3 * sqrt (233) = 20,35245 #

Isten áldja …. Remélem, a magyarázat hasznos.