Mi a standard formája a parabola egyenletének az x = -2 irányban és a (-3,3) fókuszban?

Mi a standard formája a parabola egyenletének az x = -2 irányban és a (-3,3) fókuszban?
Anonim

Válasz:

# (y-3) ^ 2 = - (2x + 5) #, a reqd. egyenletben. Parabola.

Magyarázat:

enged #F (-3,3) # legyen a Fókusz, és # d: x + 2 = 0 # a. t

reqd. Parabola jelöli # S #.

A Geometriából ismert, hogy ha #P (x, y) az S #, aztán a # # Bot-

távolság btwn. a pt. # P # & # D # megegyezik a btwn távolsággal.

a pontokat. # F # & # P #.

Ez a Parabola tulajdonosa a Focus Directrix tulajdonság

Parabola.

#:.| X + 2 | = sqrt {(x + 3) ^ 2 + (y-3) ^ 2} #

#:. (Y-3) ^ 2 + (x + 3) ^ 2- (x + 2) ^ 2 = 0 #

#:. (Y-3) ^ 2 = - (2x + 5) #, a reqd. egyenletben. Parabola.