A következő egyenlet megoldása: x ^ 8-10x ^ 4 + 9 = 0?

A következő egyenlet megoldása: x ^ 8-10x ^ 4 + 9 = 0?
Anonim

Válasz:

#x = + -1, + -i, + -sqrt (3), + -sqrt (3) i #

Magyarázat:

Adott:

# X ^ 8-10x ^ 4 + 9 = 0 #

Ne feledje, hogy ez ténylegesen négyzetes # X ^ 4 # így tetszik:

# (x ^ 4) ^ 2-10 (x ^ 4) +9 = 0 #

Megállapíthatjuk ezt:

# 0 = (x ^ 4) ^ 2-10 (x ^ 4) +9 = (x ^ 4-1) (x ^ 4-9) #

A fennmaradó quartikus tényezők mindegyike különbözik a négyzeteknek, így használhatjuk:

# A ^ 2-B ^ 2 = (A-B) (A + B) #

megtalálni:

# x ^ 4-1 = (x ^ 2) ^ 2-1 ^ 2 = (x ^ 2-1) (x ^ 2 + 1) #

# x ^ 4-9 = (x ^ 2) ^ 2 - 3 ^ 2 = (x ^ 2-3) (x ^ 2 + 3) #

A fennmaradó négyzetes tényezők mind a négyzetek közötti különbségeket is befolyásolják, de irracionális és / vagy komplex együtthatókat kell használnunk néhányuk számára:

# x ^ 2-1 = x ^ 2-1 ^ 2 = (x-1) (x + 1) #

# x ^ 2 + 1 = x ^ 2-i ^ 2 = (x-i) (x + i) #

# x ^ 2-3 = x ^ 2- (sqrt (3)) ^ 2 = (x-sqrt (3)) (x + sqrt (3)) #

# x ^ 2 + 3 = x ^ 2- (sqrt (3) i) ^ 2 = (x-sqrt (3) i) (x + sqrt (3) i) #

Ezért az eredeti oktikus polinom nullái:

#x = + -1, + -i, + -sqrt (3), + -sqrt (3) i #