Válasz:
Ha a születés valószínűsége egy fiú
mert
Magyarázat:
Vegyünk egy véletlenszerű kísérletet, amely csak két lehetséges eredményt tartalmaz (Bernoulli kísérletnek). Esetünkben a kísérlet egy gyermek születése egy nőnél, és két eredmény a „fiú” a valószínűséggel
Ha két azonos kísérlet egymás után egymástól függetlenül megismétlődik, a lehetséges eredmények halmaza bővül. Négy közülük: "fiú / fiú", "fiú / lány", "lány / fiú" és "lány / lány". A megfelelő valószínűségek:
P("Fiú / fiú")
P("fiú lány")
P("fiú lány")
P("Lány / lány")
Figyeljük meg, hogy az összes fenti valószínűség összege megegyezik
Különösen a "fiú / fiú" valószínűsége
Hasonlóan vannak
A Bernoulli kísérletekkel kapcsolatos részletes információkat javasoljuk, hogy tanulmányozzuk ezt az anyagot az UNIZOR-on a linkek követésével Valószínűség - bináris eloszlások - Bernoulli.
Tegyük fel, hogy egy családnak három gyermeke van. Keresse meg annak a valószínűségét, hogy az első két gyermek született. Mi a valószínűsége annak, hogy az utolsó két gyermek lány?
1/4 és 1/4 Kétféleképpen dolgozhatunk ki. 1. módszer. Ha egy családnak 3 gyermeke van, akkor a különböző fiú-lánykombinációk száma 2 x 2 x 2 = 8 Ezek közül kettő kezdődik (fiú, fiú ...) A harmadik gyermek lehet fiú vagy egy lány, de nem számít, hogy melyik. Tehát P (B, B) = 2/8 = 1/4 módszer 2. Meg tudjuk állapítani, hogy a két gyermek fiú valószínűsége: P (B, B) = P (B) xx P (B) = 1/2 xx 1/2 = 1/4 Pontosan ugyanúgy, mint a valószínűsége. az utols
A feljegyzések azt mutatják, hogy a valószínűsége 0,00006, hogy egy autónak egy alagútban egy gumiabroncsja lesz, hogy egy bizonyos alagútban vezethessen. Keresse meg annak a valószínűségét, hogy a csatornán áthaladó legalább 10 000 autónak lapos gumiabroncsai lesznek?
Először egy binomiális: X ~ B (10 ^ 4,6 * 10 ^ -5), még akkor is, ha a p rendkívül kicsi, n hatalmas. Ezért ezt a normális használatával közelíthetjük meg. X ~ B (n, p), Y ~ N (np, np (1-p)) esetében Tehát Y ~ N (0.6,0.99994) van, P (x> = 2), normál használatával korrigálva határok, P (Y> = 1,5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1,5-0,6) / sqrt (0,99994) ~ ~ 0,90 P (Z> = 0,90) = 1-P (Z = 0,90) Z-táblázatot használva megállapítjuk, hogy z = 0,90 P (Z = 0,90) = 0,8159 P (Z> = 0,90
Sok éven át 15 órakor tanulmányozta, hogy hányan várják a bankban a sorban tartózkodó embereket, és valószínűsített eloszlást hozott létre a 0, 1, 2, 3 vagy 4 fő számára. A valószínűségek 0,1, 0,3, 0,4, 0,1 és 0,1. Mekkora a valószínűsége annak, hogy legalább 3 ember sorban van péntek délután 15 órakor?
Ez egy MINDEN ... VAGY helyzet. Hozzáadhatja a valószínűségeket. A feltételek exkluzívak, vagyis: nem lehet 3 és 4 fő egy sorban. 3 ember vagy 4 ember van sorban. Add hozzá: P (3 vagy 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Ellenőrizze a választ (ha van ideje a teszt során), az ellenkező valószínűség kiszámításával: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 És ez és a válasz 1,0-ig terjed, ahogy kellene.