Két gráfom van: egy lineáris gráf 0,751 m / s meredekséggel, és egy grafikon, amely növekvő sebességgel növekszik, átlagosan 0,724 m / s meredekséggel. Mit mond ez a grafikonokban ábrázolt mozgásról?
Mivel a lineáris gráfnak állandó lejtése van, nulla gyorsulása van. A másik grafikon pozitív gyorsulást jelent. A gyorsulást {Deltavelocity} / {Deltatime} -ként határoztuk meg. Tehát, ha állandó lejtése van, a sebesség nem változik, és a számláló nulla. A második grafikonban a sebesség változik, ami azt jelenti, hogy az objektum gyorsul
Négy diák van, mindegyik különböző magasságban, akik véletlenszerűen elrendezhetők egy sorban. Mekkora a valószínűsége annak, hogy a legmagasabb hallgató első sorban lesz, és a legrövidebb diák utolsó sorban lesz?
1/12 Feltételezve, hogy van egy sor elülső és vége (azaz csak a vonal egyik végét lehet osztályozni) A valószínűség, hogy a legmagasabb hallgató 1. sorban = 1/4 Most, a legrövidebb diák valószínűsége a 4. sorban = 1/3 (Ha a legmagasabb személy az első sorban van, akkor nem is lehet utolsó) A teljes valószínűség = 1/4 * 1/3 = 1/12 Ha nincs beállított eleje és vége sor (vagyis mindkét vég lehet először), akkor csak az a valószínűség, hogy rövid, mint az egyik vég
Mekkora az egyenlet a sorban az m = 13/17 meredekséggel, amely áthalad (0, -1)?
Y = 13 / 17x-1 A vonal egy egyenlete, a lejtő és egy pont ismeretében y-y_0 = m (x-x_0). Az értékek helyettesítése az y + 1 = 13/17 (x-0) -> y = 13 / 17x-1 eléréséhez