Nos, legalább két módja van erre.
Az első út:
enged
#color (kék) (vecu xx vecv) = << u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1 >> #
#= << -1*6 - 2*3, 2*4 - (-1*6), -1*3 - (-1*4) >>#
# = szín (kék) (<< -12, 14, 1 >>) #
Feltételezve, hogy nem ismeri ezt a képletet, a második út (ami egy kicsit bolondabb) felismeri, hogy:
#hati xx hatj = hatk #
#hatj xx hatk = hati #
#hatk xx hati = hatj #
#hatA xx hatA = vec0 #
#hatA xx hatB = -hatB xx hatA # hol
#hati = << 1,0,0 >> # ,#hatj = << 0,1,0 >> # , és#hatk = << 0,0,1 >> # .
Így a vektorok átírása egységvektor formában:
# (- hati - hatj + 2hatk) xx (4hati + 3hatj + 6hatk) #
# = törlés (-4 (hati xx hati)) ^ (0) - 3 (hati xx hatj) - 6 (hati xx hatk) - 4 (hatj xx hati) - törlés (3 (hatj xx hatj)) ^ (0) - 6 (hatj xx hatk) + 8 (hatk xx hati) + 6 (hatk xx hatj) + törlés (12 (hatk xx hatk)) ^ (0) #
# = -3hatk + 6hatj + 4hatk - 6hati + 8hatj - 6hati #
# = - 12hati + 14hatj + hatk #
# = szín (kék) (<< -12, 14, 1 >>) #
várt módon.
Mi a <0,8,5> és <-1, -1,2> kereszttermék?
<21,-5,8> We know that vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) hatn, where hatn is a unit vector given by the right hand rule. So for of the unit vectors hati, hatj and hatk in the direction of x, y and z respectively, we can arrive at the following results. color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk
Mi a [0,8,5] és [1,2, -4] keresztterméke?
[0,8,5] xx [1,2, -4] = [-42,5, -8] A vecA és vecB kereszttermékét a vecA xx vecB = || vecA | * || vecB || * sin (theta) hatn, ahol a theta a vecA és vecB közötti pozitív szög, és a hatn egy egység vektor, a jobb oldali szabály által megadott irányban. A hati, hatj és hatk egységvektorok esetében x, y és z irányban a szín (fehér) ((szín (fekete) {hati xx hati = vec0}, szín (fekete) {qquad hati xx hatj = hatk} , szín (fekete) {qquad hati xx hatk = -hatj}), (szín (fekete) {hatj xx hati = -hatk}, szín (f
Mi a két vektor keresztterméke? + Példa
A keresztterméket elsősorban 3D-vektorokhoz használják. A jobboldali koordinátarendszer használatakor a két vektor közötti normális (ortogonális) kiszámítására szolgál; ha baloldali koordinátarendszerrel rendelkezik, a normál az ellenkező irányba mutat. Ellentétben a skalárot előállító ponttermékkel; a kereszttermék vektorot ad. A keresztezett termék nem kommutatív, így a régi x x vec v. Ha 2 vektort kapunk: vec u = {u_1, u_2, u_3} és vec v = {v_1, v_2, v_3}, akkor a kép