Mekkora az egyenlet, amely az eredeten áthalad, és merőleges a következő pontokon áthaladó vonalra: (3,7), (5,8)?
Y = -2x Először meg kell találnunk a (3,7) és (5,8) "gradiens" = (8-7) / (5-3) "gradiensen" áthaladó vonal gradiensét. / 2 Most, hogy az új sor PERPENDICULAR a 2 ponton áthaladó vonalhoz, akkor ezt az egyenletet használhatjuk: m_1m_2 = -1, ahol a két különböző vonal gradiensei szorozva -1, ha a vonalak egymásra merőlegesek, azaz derékszögben. így az új sorod 1 / 2m_2 = -1 m_2 = -2 gradiens lesz. Most használhatjuk a pontgradiens képletet az y-0 = -2 (x-0) y = - vonal egyenletének megkeresés
Mi az egyenlet a soron, amely áthalad az eredeten, és merőleges a következő pontokon áthaladó vonalra: (9,4), (3,8)?
Lásd alább: A (9,4) és (3,8) = (4-8) / (9-3) -2/3-on áthaladó vonal meredeksége, így bármelyik vonal, amely merőleges az áthaladó vonalra (9,4 ) és (3,8) lesz a lejtés (m) = 3/2 Ezért meg kell derítenünk a (0,0) -on áthaladó vonal egyenletét, és a kívánt egyenlet = 3/2 lejtővel (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Az XY szegmens egy olyan repülőgép útvonalát jelenti, amely áthalad a koordinátákon (2, 1) és (4 5). Mekkora egy olyan vonal lejtése, amely egy másik repülőgép útját képviseli, amely párhuzamosan halad az első repülőgéppel?
"lejtés" = 2 Számítsa ki az XY lejtését a szín (kék) "gradiens képlet" színével (narancssárga) "Emlékeztető" szín (piros) (bar (ul (| színes (fehér) (2/2) szín (fekete)) (m = (y_2-y_1) / (x_2-x_1)) szín (fehér) (2/2) |))) ahol m a lejtőt és a (x_1, y_1), (x_2, y_2) "2 koordinátapontot jelöli. " A 2 pont itt (2, 1) és (4, 5) legyen (x_1, y_1) = (2,1) "és" (x_2, y_2) = (4,5) rArrm = (5-1) / (4-2) = 4/2 = 2 A következő tényt ismerni kell a kérdé