Válasz:
Magyarázat:
Először is meg kell találnunk az áthaladó vonal színátmenetét
Most, hogy az új sor PERPENDICULAR, a 2 ponton áthaladó vonalhoz használjuk ezt az egyenletet
így az új sorod egy gradiens lesz
Most használhatjuk a pontgradiens képletet a vonal egyenletének megkereséséhez
Válasz:
Az eredeten áthaladó egyenlet és a lejtés = -2
Magyarázat:
A merőleges vonal meredeksége = -1 / m = -2 #
Az eredeten áthaladó egyenlet és a lejtés = -2
grafikon {-2x -10, 10, -5, 5}
Mekkora az egyenlet a (0, -1) -en áthaladó és a következő pontokon áthaladó vonalra merőleges vonal: (8, -3), (1,0)?
7x-3y + 1 = 0 A két pontot (x_1, y_1) és (x_2, y_2) összekötő vonal lejtése (y_2-y_1) / (x_2-x_1) vagy (y_1-y_2) / (x_1-x_2 ) Mivel a pontok (8, -3) és (1, 0), a vonalat összekötő vonal lejtőjét a (0 - (- 3)) / (1-8) vagy (3) / (- 7) adja meg. azaz -3/7. Két merőleges vonal meredeksége mindig -1. Ezért az erre merőleges vonal meredeksége 7/3, és így a lejtőforma egyenlete y = 7 / 3x + c lehet, mivel ez áthalad a (0, -1) ponton, és ezeket az értékeket a fenti egyenletbe helyezzük. -1 = 7/3 * 0 + c vagy c = 1 Ezért a k
Mi az egyenlet a soron, amely áthalad az eredeten, és merőleges a következő pontokon áthaladó vonalra: (9,4), (3,8)?
Lásd alább: A (9,4) és (3,8) = (4-8) / (9-3) -2/3-on áthaladó vonal meredeksége, így bármelyik vonal, amely merőleges az áthaladó vonalra (9,4 ) és (3,8) lesz a lejtés (m) = 3/2 Ezért meg kell derítenünk a (0,0) -on áthaladó vonal egyenletét, és a kívánt egyenlet = 3/2 lejtővel (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Mekkora az egyenlet, amely az eredeten áthalad, és merőleges a következő pontokon áthaladó vonalra: (9,2), (- 2,8)?
6y = 11x Egy vonal (9,2) és (-2,8) átmérője (fehér) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Az erre merőleges minden vonal színének (fehér) ("XXX") m_2 = -1 / m_1 = 11/6 lesz. szín (fehér) ("XXX") (y-0) / (x-0) = 11/6 vagy szín (fehér) ("XXX") 6y = 11x