Válasz:
Amplitúdó
Magyarázat:
Az egyenlet standard formája
Adott
Amplitúdó
Időszak
Fázis késés
Függőleges eltolás
grafikon {3 cos ((x / 2) - (pi / 4)) + 3 -9,455, 10,545, -2,52, 7,48}
Tegyük fel, hogy X egy folytonos véletlen változó, amelynek valószínűségi sűrűségfüggvényét a következőképpen adjuk meg: f (x) = k (2x - x ^ 2) 0 <x <2 esetén; 0 az összes többi x esetében. Mi a k, P (X> 1), E (X) és Var (X) értéke?
K = 3/4 P (x> 1) = 1/2 E (X) = 1 V (X) = 1/5 A k megtalálásához int_0 ^ 2f (x) dx = int_0 ^ 2k (2x-x ^ 2) dx = 1:. k [2x ^ 2 / x-^ 3/3] _0 ^ 2 = 1 k (4-8 / 3) = 1 => 4 / 3k = 1 => k = 3/4 P (x> 1) kiszámításához ), P (X> 1) = 1-P (0 <x <1) = 1-int_0 ^ 1 (3/4) (2x-x ^ 2) = 1-3 / 4 [2x ^ 2 / 2-x ^ 3/3] _0 ^ 1 = 1-3 / 4 (1-1 / 3) = 1-1 / 2 = 1/2 E (X) E (X) = int_0 ^ 2xf kiszámításához (x ) dx = int_0 ^ 2 (3/4) (2x ^ 2-x ^ 3) dx = 3/4 [2x ^ 3/3-x ^ 4/4] _0 ^ 2 = 3/4 (16 / 3- 16/4) = 3/4 * 16/12 = 1 V (X) V (X) = E (X ^ 2) - (E (X)) ^ 2 = E (X ^ 2) -1
Legyen f egy folyamatos függvény: a) Keresse meg az f (4) -t, ha _0 ^ (x ^ 2) f (t) dt = x sin πx az összes x esetében. b) Keresse meg az f (4) -t, ha _0 ^ f (x) t ^ 2 dt = x sin πx az összes x esetében?
A) f (4) = pi / 2; b) f (4) = 0 a) Mindkét oldal megkülönböztetése. A bal oldali Calculus második alapvető elméletén és a jobb oldalon lévő termék- és láncszabályokon keresztül azt látjuk, hogy a differenciálódás azt mutatja, hogy: f (x ^ 2) * 2x = sin (pix) + pixcos (pix ) Az x = 2 jelzése azt mutatja, hogy f (4) * 4 = sin (2pi) + 2picos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Integrálja a belső kifejezést. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Értékelje. (f (x)) ^
Bizonyítsuk be, hogy ha n páratlan, akkor n = 4k + 1 néhány k esetében ZZ-ben, vagy n = 4k + 3 néhány k esetében ZZ-ben?
Íme egy alapvető vázlat: Proposition: Ha n páratlan, akkor n = 4k + 1 néhány k esetén ZZ-ben, vagy n = 4k + 3 néhány k esetében ZZ-ben. Bizonyítás: Legyen n ZZ-ben, ahol n páratlan. Osztjuk meg n-vel 4. Ezután osztási algoritmussal, R = 0,1,2 vagy 3 (maradék). 1. eset: R = 0. Ha a maradék 0, akkor n = 4k = 2 (2k). :.n is a 2. eset: R = 1. Ha a maradék 1, akkor n = 4k + 1. :. n páratlan. 3. eset: R = 2. Ha a maradék 2, akkor n = 4k + 2 = 2 (2k + 1). :. n egyenletes. 4. eset: R = 3. Ha a maradék 3, akkor n = 4k + 3. :. n p