Válasz:
A lejtő 2-es. Hogyan határozzuk meg ezt az alábbiakban.
Magyarázat:
A lejtő megtalálásához három lépés van
-
Keresse meg a kettő közötti különbséget
# Y # értékeket.#25-5=20# Ezt általában a vonal „emelkedésének” nevezik.
-
Keresse meg a kettő közötti különbséget
#x# értékeket.#20-10=10# Ezt általában a sor „futásának” nevezik.
Nem igazán számít, hogy melyik koordinátákat helyezi el először a kivonások során. A legtöbb ember először helyezte a második pont koordinátáját, majd kivonja az első pont koordinátáját. Csak győződjön meg róla, hogy következetes a választás.
- Oszd meg az emelkedést a futás megvásárlásához:
# (emelkedés) / (futás) = lejtés # #20/10 = 2#
Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Gregory egy ABCD téglalapot húzott egy koordináta síkra. Az A pont (0,0). A B pont (9,0). A C pont (9, -9). A D pont (0, -9). Keresse meg az oldalsó CD hosszát?
Oldalsó CD = 9 egység Ha figyelmen kívül hagyjuk az y koordinátákat (az egyes pontok második értéke), könnyű megmondani, hogy mivel az oldalsó CD x = 9-nél kezdődik, és az x = 0, az abszolút érték 9: | 0 - 9 | = 9 Ne feledje, hogy az abszolút értékekre vonatkozó megoldások mindig pozitívak. Ha nem érti, miért van ez, akkor a következő képletet is használhatja: P_ "1" (9, -9) és P_ "2" (0, -9 ) A következő egyenletben P_ "1" C és P_ "2"
Az A pont (-2, -8), a B pont pedig (-5, 3). Az A pontot (3pi) / 2 forgatjuk az óramutató járásával megegyező irányban az eredet körül. Melyek az A pont új koordinátái és milyen mértékben változott az A és B pont közötti távolság?
Legyen A, (r, theta) kezdeti poláris koordinátája Az A kezdeti derékszögű koordinátája (x_1 = -2, y_1 = -8) Így 3pi / után írhatunk (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta). 2 az óramutató járásával megegyező irányban az A új koordinátája x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 A kezdeti távolsága B-től (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 végső távolság az A új pozíci