Válasz:
Magyarázat:
Euler identitása az Euler összetett elemzéséből származó képlet különleges esete, amely kimondja, hogy minden valós x szám esetén
ezt a képletet használjuk
Az f (x) = (x + 2) (x + 6) függvény grafikonja az alábbiakban látható. Milyen állítás van a függvényről? A függvény minden x valós értékre pozitív, ahol x> –4. A függvény negatív minden x valós értékre, ahol –6 <x <–2.
A függvény negatív minden x valós értékre, ahol –6 <x <–2.
Az f (x) függvény nullái 3 és 4, míg a második g (x) függvény nullái 3 és 7. Mi az y = f (x) / g függvény nullája (i)? )?
Csak y = f (x) / g (x) nulla értéke 4. Az f (x) függvény nullái 3 és 4, ez az eszköz (x-3) és (x-4) f (x ). Továbbá a második g (x) függvény nullái 3 és 7, amelyek (x-3) és (x-7) eszközök f (x) tényezői. Ez azt jelenti, hogy az y = f (x) / g (x) függvényben, bár (x-3) meg kell szüntetni, a g (x) = 0 nevező nincs megadva, ha x = 3. Azt is nem definiáljuk, ha x = 7. Ezért van egy lyuk x = 3. és csak y = f (x) / g (x) nulla értéke 4.
Hogyan fejezzük ki az f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta kifejezést a nem exponenciális trigonometrikus függvények tekintetében?
Lásd az alábbiakban f (theta) = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2theta + 3cot ^ 2theta-3csc ^ 2theta = 3sin ^ 2-beta + 3 (csc ^ 2theta-1) -3csc ^ 2theta = 3sin ^ 2theta + Cancel (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta