Hogyan különbözteti meg a cos (1-2x) ^ 2-t?

Hogyan különbözteti meg a cos (1-2x) ^ 2-t?
Anonim

Válasz:

# Dy / dx = 4cos (1-2x) sin (1-2x) #

Magyarázat:

Először hagyd #cos (1-2x) = u #

Így, # Y = u ^ 2 #

# Dy / dx = (dy) / (du) * (du) / (dx) #

# (Dy) / (du) = 2u #

# (Du) / (dx) = d / dx cos (1-2x) = d / dx cos (V) #

# (Du) / (dx) = (du) / (dv) * (DV) / (dx) #

# dy / dx = (dy) / (du) * (du) / (dv) * (dv) / (dx) #

# (Du) / (dv) = - sin (v) #

# (Dv) / (dx) = - 2 #

# Dy / dx = 2u * -sin (V) * - 2 #

# Dy / dx = 4usin (v) #

# Dy / dx = 4cos (1-2x) sin (1-2x) #