Válasz:
Magyarázat:
A Láncszabály:
Először megkülönböztessük a külső függvényt, egyedül hagyjuk a belsőt, majd megszorozzuk a belső funkció deriváltjával.
#y = tan sqrt (3x-1) #
# dy / dx = sec ^ 2 sqrt (3x-1) * d / dx sqrt (3x-1) #
# = sec ^ 2 sqrt (3x-1) * d / dx (3x-1) ^ (1/2) #
# = sec ^ 2 sqrt (3x-1) * 1/2 (3x-1) ^ (- 1/2) * d / dx (3x-1) #
# = sec ^ 2 sqrt (3x-1) * 1 / (2 sqrt (3x-1)) * 3 #
# = (3 mp ^ 2 sqrt (3x-1)) / (2 sqrt (3x-1)) #
A +, -,:, * használatával (az összes jelet kell használnia, és az egyiket használhatja kétszer, és nem engedélyezheti a zárójelek használatát), tegye a következő mondatot: 9 2 11 13 6 3 = 45?
9-2 * 11 + 13: 6 * 3 = 45 9-2 * 11 + 13: 6 * 3 = 45 Ez megfelel a kihívásnak?
Hogyan találja meg az f (x) = [(2x-5) ^ 5] / [(x ^ 2 +2) ^ 2] származékát a láncszabály használatával?
= (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 * 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 f ' (x) = (f '(x) * g (x) - f (x) * g' (x)) / (g (x)) ^ 2 f '(x) = (((5 (2x-5 ) ^ 4 * 2) (x ^ 2 + 2) ^ 2) - (2x-5) ^ 5 * (2 (x ^ 2 + 2) * 2x)) / ((x ^ 2 + 2) ^ 2) ^ 2 = (10 (2x-5) ^ 4 * (x ^ 2 + 2) ^ 2 - (2x-5) ^ 5 * 4x (x ^ 2 + 2)) / (x ^ 2 + 2) ^ 4 Többet csökkenthet, de ez unatkozik megoldani ezt az egyenletet, csak használja az algebrai módszert.
Hogyan különbözteti meg az f (x) = sqrt (e ^ cot (x)) használatát a láncszabály használatával?
F '(x) == - (sqrt (e ^ cot (x)). csc ^ 2 (x)) / 2 f (x) = sqrt (e ^ cot (x)) Az f (x ), láncszabályt kell használnunk. szín (piros) "láncszabály: f (g (x)) '= f' (g (x)). g '(x)" Legyen u (x) = cot (x) => u' (x) = -csc ^ 2 (x) és g (x) = e ^ (x) => g '(x) = e ^ (x) .g' (u (x)) = e ^ cot (x) f (x ) = sqrt (x) => f '(x) = 1 / (2sqrt (x)) => f' (g (u (x))) = 1 / (2sqrt (e ^ cot (x)) d / dx (f (g (u (x))) = f '(g (u (x))) g' (u (x)). u '(x) = 1 / (sqrt (e ^ cot (x ))) e ^ kiságy (x) .- cos ^ 2 (x) = (- e ^ kiságy