Mert nem tudjuk, hogy az elektron valójában hol van.
Ehelyett azt számítjuk ki, hogy az atomok magja körül lévő tér minden pontján van-e az elektron valószínűsége. Ez a háromdimenziós valószínűségi sorozatok azt mutatják, hogy az elektronok nem hajlamosak bárhová, de a legvalószínűbb, hogy a meghatározott térben meghatározott formákban találhatók.Ezután kiválaszthatunk egy valószínűségi szintet, például 95% -ot, és rajzolhatunk egy élet a térfogat körül, ahol az elektron valószínűsége 95% vagy annál jobb. Ezek a térfogatok a klasszikus orbitális formák, amelyeket látni fog.
Ezeken a helyeken azonban a valószínűségek nem azonosak, így az orbiták néha sugárirányú eloszlási függvényként is megjelennek: grafikonok ábrázolása valószínűséggel a távolságtól a magtól.
A szerződő fél egy olyan eladást fontolgat, amely 33 000 dolláros nyereséget ígér a 0,7-es valószínűséggel 0,7-es valószínűséggel 0,3-as valószínűséggel?
Sok éven át 15 órakor tanulmányozta, hogy hányan várják a bankban a sorban tartózkodó embereket, és valószínűsített eloszlást hozott létre a 0, 1, 2, 3 vagy 4 fő számára. A valószínűségek 0,1, 0,3, 0,4, 0,1 és 0,1. Mekkora a valószínűsége, hogy legfeljebb 3 fő sorban van péntek délután 15 órakor?
Legfeljebb 3 ember lenne a sorban. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Így P (X <= 3) = 0,9 Így a kérdés könnyebb legyen, ha a bókot szabályoznád, mivel van egy olyan értéked, amit nem érdekel, így el lehet távolítani a teljes valószínűségtől. mint: P (X = 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 így P (X <= 3) = 0,9
Sok éven át 15 órakor tanulmányozta, hogy hányan várják a bankban a sorban tartózkodó embereket, és valószínűsített eloszlást hozott létre a 0, 1, 2, 3 vagy 4 fő számára. A valószínűségek 0,1, 0,3, 0,4, 0,1 és 0,1. Mekkora a valószínűsége annak, hogy legalább 3 ember sorban van péntek délután 15 órakor?
Ez egy MINDEN ... VAGY helyzet. Hozzáadhatja a valószínűségeket. A feltételek exkluzívak, vagyis: nem lehet 3 és 4 fő egy sorban. 3 ember vagy 4 ember van sorban. Add hozzá: P (3 vagy 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Ellenőrizze a választ (ha van ideje a teszt során), az ellenkező valószínűség kiszámításával: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 És ez és a válasz 1,0-ig terjed, ahogy kellene.