Válasz:
Lásd alább.
Magyarázat:
Bármely két egymást követő páratlan szám páros számot ad.
Bármelyik páros szám, ha hozzáadódik, páros számot eredményez.
Hat egymást követő páratlan számot oszthatunk meg három egymást követő páratlan számpárban.
A három egymást követő páratlan szám három páros számot ad.
A három páros szám páros számot ad.
Ezért hat egymást követő páratlan szám páros számot ad.
Legyen az első páratlan szám
Hat egymást követő páratlan szám van
# (2n-1), (2n + 1), (2n + 3), (2n + 5), (2n + 7), (2n + 9) #
A hat egymást követő páratlan szám összege
# sum = (2n-1) + (2n + 1) + (2n + 3) + (2n + 5) + (2n + 7) + (2n + 9) #
Hozzáadása brute force módszerrel
# Összege = (6xx2n) -1 + 1 + 3 + 5 + 7 + 9 #
Látjuk, hogy az első ciklus mindig egyenletes lesz
# => sum = "páros szám" + 24 #
Mivel
#:. sum = "páros szám" #
Ezért bizonyított.
Válasz:
Lásd lentebb
Magyarázat:
A páratlan számnak van formája
Legyen az első
Azt is tudjuk, hogy az aritmetikai progresszióban lévő n egymást követő számok összege
ami páros szám minden
Válasz:
Legyen f (x) = x-1. 1) Ellenőrizze, hogy az f (x) sem páros vagy páratlan. 2) Lehet-e az f (x) egy páros függvény és páratlan függvény összege? a) Ha igen, mutasson megoldást. Több megoldás van? b) Ha nem, bizonyítsa, hogy lehetetlen.
Legyen f (x) = | x -1 |. Ha f egyenlő, akkor f (-x) minden x esetében f (x) -nek felel meg. Ha f furcsa volt, akkor f (-x) egyenlő -f (x) minden x esetén. Figyelje meg, hogy x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Mivel 0 nem egyenlő 2-vel vagy -2-re, f nem sem páros, sem furcsa. Lehet, hogy f (x) + h (x), ahol g egyenletes és h páratlan? Ha ez igaz, akkor g (x) + h (x) = | x - 1 |. Hívja ezt az állítást 1. Cserélje ki az x-et. g (-x) + h (-x) = | -x - 1 | Mivel g egyenletes és h páratlan, van: g (x) - h (x) = | -x - 1 | Hívja ezt az állítá
Ismerve a képletet az N egész számok összegére a) mi az összege az első N egymást követő négyzetes egész számból, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Az első N egymást követő kocka egész számok összege Sigma_ (k = 1) ^ N k ^ 3?
S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Összeg_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 összeg_ {i = 0} ^ ni ^ 3 = összeg_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + összeg_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ n + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 az összegzéshez {i = 0} ^ ni ^ 2 összeg_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, de az összeg_ {i = 0} ^ ni = ((n + 1) n) / 2 &
"Léna 2 egymást követő egész számot tartalmaz.Megjegyzi, hogy összege megegyezik a négyzetek közötti különbséggel. Lena újabb 2 egymást követő egész számot választ, és ugyanezt észrevette. Bizonyítsuk be algebrai módon, hogy ez igaz minden 2 egymást követő egész számra?
Kérjük, olvassa el a magyarázatot. Emlékezzünk vissza, hogy az egymást követő egész számok 1-től eltérnek. Ha tehát m egy egész szám, akkor a következő egész számnak n + 1-nek kell lennie. E két egész szám összege n + (n + 1) = 2n + 1. A négyzetük közötti különbség (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, kívánt esetben! Érezd a matematika örömét!