Válasz:
Magyarázat:
A parabola standard formája a következő:
hol
Helyezze vissza a csúcs értékét, így:
Tekintve, hogy a parabola áthalad a ponton
Az érték értéke
A szabványos űrlap:
Mi a parabola egyenlete, melynek csúcsa van a (6, 3) ponton, és áthalad a ponton (3, -9)?
Y = -4/3 x ^ 2 + 16x -45> kezdődik az egyenlet írása a csúcsformában, mivel a csúcsfüggvények megadva vannak. a csúcsforma: y = a (x - h) ^ 2 + k ", (h, k) a csúcs szálaként" így a részleges egyenlet: y = a (x - 6) ^ 2 + 3 Egy, helyettesítő (3, -9) az egyenletbe: a (3 - 6) ^ 2 + 3 = -9 9a = - 12 a = - 4/3 rArr y = -4/3 (x - 6) ^ 2 + 3 "az egyenlet" terjesztési zárójel és az egyenlet standard formában y = -4/3 x ^ 2 + 16x - 45
A középpontú egyenlet egyenletének standard formája az (5,8) pontnál van, és áthalad a ponton (2,5)?
(x - 5) ^ 2 + (y - 8) ^ 2 = 18 kör alakú (x - a) ^ 2 + (y - b) ^ 2 = r ^ 2, ahol (a, b) a a kör középpontja és r = sugár. ebben a kérdésben a központ ismert, de r nem. Az r megtalálásához azonban a távolság a középponttól a pontig (2, 5) a sugár. A távolság képlet használata lehetővé teszi számunkra, hogy valójában r ^ 2 r ^ 2 = (x_2 - x_1) ^ 2 + (y_2 - y_1) ^ 2 használjunk (2, 5) = (x_2, y_2) és (5, 8) = (x_1, y_1), majd (5 - 2) ^ 2 + (8 - 5) ^ 2 = 3 ^ 2 + 3 ^ 2 = 9 + 9 = 18 k
Melyik állítást írja le legjobban az (x + 5) egyenlet 2 + 4 (x + 5) + 12 = 0? Az egyenlet négyzetes formában van, mert az u helyettesítés u = (x + 5) u kvadratikus egyenletként újraírható. Az egyenlet négyzetes formában van, mert amikor bővül,
Amint az alábbiakban kifejtjük, az u-helyettesítés azt fogja leírni, mint négyzetes u. Négyzetes x-ben a kiterjesztése a legmagasabb ereje x, mint 2, legjobban négyszögletesen írja le x-ben.