Az f (x) = (x + 2) (x + 6) függvény grafikonja az alábbiakban látható. Milyen állítás van a függvényről? A függvény minden x valós értékre pozitív, ahol x> –4. A függvény negatív minden x valós értékre, ahol –6 <x <–2.
A függvény negatív minden x valós értékre, ahol –6 <x <–2.
Az f (x) függvény nullái 3 és 4, míg a második g (x) függvény nullái 3 és 7. Mi az y = f (x) / g függvény nullája (i)? )?
Csak y = f (x) / g (x) nulla értéke 4. Az f (x) függvény nullái 3 és 4, ez az eszköz (x-3) és (x-4) f (x ). Továbbá a második g (x) függvény nullái 3 és 7, amelyek (x-3) és (x-7) eszközök f (x) tényezői. Ez azt jelenti, hogy az y = f (x) / g (x) függvényben, bár (x-3) meg kell szüntetni, a g (x) = 0 nevező nincs megadva, ha x = 3. Azt is nem definiáljuk, ha x = 7. Ezért van egy lyuk x = 3. és csak y = f (x) / g (x) nulla értéke 4.
Legyen f (x) = x-1. 1) Ellenőrizze, hogy az f (x) sem páros vagy páratlan. 2) Lehet-e az f (x) egy páros függvény és páratlan függvény összege? a) Ha igen, mutasson megoldást. Több megoldás van? b) Ha nem, bizonyítsa, hogy lehetetlen.
Legyen f (x) = | x -1 |. Ha f egyenlő, akkor f (-x) minden x esetében f (x) -nek felel meg. Ha f furcsa volt, akkor f (-x) egyenlő -f (x) minden x esetén. Figyelje meg, hogy x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Mivel 0 nem egyenlő 2-vel vagy -2-re, f nem sem páros, sem furcsa. Lehet, hogy f (x) + h (x), ahol g egyenletes és h páratlan? Ha ez igaz, akkor g (x) + h (x) = | x - 1 |. Hívja ezt az állítást 1. Cserélje ki az x-et. g (-x) + h (-x) = | -x - 1 | Mivel g egyenletes és h páratlan, van: g (x) - h (x) = | -x - 1 | Hívja ezt az állítá