Válasz:
Az egyik lehetséges megoldás
Magyarázat:
Leírhatjuk azt a következő formában:
Mint korábban mondtam, használok
A négyzetes egyenlet 4px ^ 2 +4 (p + a) x + p + b = 0 nem rendelkezik valós gyökerekkel. Keresse meg a p értékek tartományát az a és b értékek szerint?
Kérjük, olvassa el az alábbi magyarázatot. A négyzetes egyenlet 4px ^ 2 + 4 (p + a) x + (p + b) = 0 Az egyenletnek nincs igazi gyökere, a diszkriminánsnak Delta <0-nak kell lennie, ezért Delta = (4 (p + a)) ^ 2-4 (4p) (p + b) 0 =>, (p + a) ^ 2-p (p + b) <0 =>, p ^ 2 + 2ap + a ^ 2-p ^ 2- pb <0 =>, 2ap-pb <-a ^ 2 =>, p (2a-b) <a ^ 2 Ezért p <- (a ^ 2) / (2a-b) p <(a ^ 2) / (b-2a) Feltételek: b-2a! = 0 Ezért a tartomány a p-ben (-oo, a ^ 2 / (b-2a))
A négyzetes egyenlet 2x ^ 2-4x + 5 = 0 gyökerei alfa (a) és béta (b). (a) Mutassa meg, hogy 2a ^ 3 = 3a-10 (b) Keresse meg a kvadratikus egyenletet a 2a / b és a 2b / a gyökerekkel?
Lásd lentebb. Először a következőket találja: 2x ^ 2-4x + 5 = 0 A kvadratikus képlet használata: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 béta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 szín (kék) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2
Melyik állítást írja le legjobban az (x + 5) egyenlet 2 + 4 (x + 5) + 12 = 0? Az egyenlet négyzetes formában van, mert az u helyettesítés u = (x + 5) u kvadratikus egyenletként újraírható. Az egyenlet négyzetes formában van, mert amikor bővül,
Amint az alábbiakban kifejtjük, az u-helyettesítés azt fogja leírni, mint négyzetes u. Négyzetes x-ben a kiterjesztése a legmagasabb ereje x, mint 2, legjobban négyszögletesen írja le x-ben.