Válasz:
D.
Magyarázat:
A Gibbs szabad energia egyenletét az alábbiak adják:
Ebben az esetben
Válasz:
Magyarázat:
Használja ezt az egyenletet
# "ΔG" ^ @ = "ΔH" ^ @ - "TΔS" ^ @ #
Az átrendezés
A táska 3 piros golyót, 4 kék golyót és x zöld golyót tartalmaz. Tekintettel arra, hogy a 2 zöld márvány kiválasztásának valószínűsége 5/26, számítsuk ki a táskában lévő golyók számát?
N = 13 "Adja meg a táskában lévő golyók számát", n. "Akkor" (x / n) ((x-1) / (n-1)) = 5/26 x = n - 7 => ((n-7) / n) ((n-8) / (n-1)) = 5/26 => 26 (n-7) (n-8) = 5 n (n-1) => 21 n ^ 2 - 385 n + 1456 = 0 "lemez:" 385 ^ 2 - 4 * 21 * 1456 = 25921 = 161 ^ 2 => n = (385 pm 161) / 42 = 16/3 "vagy" 13 "Mivel n egész szám, meg kell vennünk a második megoldást (13):" => n = 13
Bizonyítsuk be, hogy: -cot ^ -1 (theta) = cos ^ -1 (theta) / 1 + (theta) ²?
Legyen cot ^ (- 1) theta = A, majd rarrcotA = theta rarrtanA = 1 / theta rarrcosA = 1 / secA = 1 / sqrt (1 + tan ^ 2A) = 1 / sqrt (1+ (1 / theta) ^ 2) rarrcosA = 1 / sqrt ((1 + theta ^ 2) / theta ^ 2) = theta / sqrt (1 + theta ^ 2) rarrA = cos ^ (- 1) (theta / (sqrt (1 + theta ^ 2)) ) = cot ^ (- 1) (theta) rarrthereforecot ^ (- 1) (theta) = cos ^ (- 1) (theta / (sqrt (1 + theta ^ 2)))
A vízszintes alap egyik végéből a részecskéket egy háromszög fölé dobják, és a csúcsot a talaj másik végéhez érik. Ha az alfa és a béta az alapszögek, és a teta a vetítési szög, bizonyítsuk, hogy a tan theta = tan alfa + tan béta?
Tekintettel arra, hogy egy részecske a vetítési szöggel van dobva egy háromszög DeltaACB-n keresztül az AB-tengely mentén elhelyezkedő vízszintes alap AB egyikének végétől, és végül a bázis másik végéhez, a C csúcsához (x, y) Legyen u a vetítés sebessége, T a repülés ideje, R = AB a vízszintes tartomány és t a részecske által a C (x, y) -nél elérendő idő. A vetítés sebességének vízszintes összetevője - > ucostheta A vetít