Ha f (x) = cot2 x és g (x) = e ^ (1 - 4x), hogyan különböztet meg f (g (x)) a láncszabályt?

Ha f (x) = cot2 x és g (x) = e ^ (1 - 4x), hogyan különböztet meg f (g (x)) a láncszabályt?
Anonim

Válasz:

# (8e ^ (1-4x)) / sin ^ 2 (2e ^ (1-4x)) # vagy # 8e ^ (1-4x) CSC ^ 2 (2e (1-4x)) #

Magyarázat:

#f (g (x)) = cot2e ^ (1-4x) #

enged #G (x) = u #

#f '(u) = d / (du) cot2u = d / (du) (cos2u) / (sin2u) = (- 2sin (2u) sin (2u) -2cos (2u) cos (2u)) / sin ^ 2 (2u) #

# = (- 2sin ^ 2 (2u) -2cos ^ 2 (2u)) / sin ^ 2 (2u) #

# = - 2 / sin ^ 2 (2u) #

#G '(x) = - 4E ^ (1-4x) #

Láncszabály használata: #f '(g (x)) = f' (u) * g '(x) #

# = - 2 / sin ^ 2 (2u) * - 4E ^ (1-4x) #

# = - 2 / sin ^ 2 (2e ^ (1-4x)) * - 4E ^ (1-4x) #

# = (8e ^ (1-4x)) / sin ^ 2 (2e ^ (1-4x)) # vagy # 8e ^ (1-4x) CSC ^ 2 (2e (1-4x)) #