Az f (x) = (x + 2) (x + 6) függvény grafikonja az alábbiakban látható. Milyen állítás van a függvényről? A függvény minden x valós értékre pozitív, ahol x> –4. A függvény negatív minden x valós értékre, ahol –6 <x <–2.
A függvény negatív minden x valós értékre, ahol –6 <x <–2.
Az f (x) függvény nullái 3 és 4, míg a második g (x) függvény nullái 3 és 7. Mi az y = f (x) / g függvény nullája (i)? )?
Csak y = f (x) / g (x) nulla értéke 4. Az f (x) függvény nullái 3 és 4, ez az eszköz (x-3) és (x-4) f (x ). Továbbá a második g (x) függvény nullái 3 és 7, amelyek (x-3) és (x-7) eszközök f (x) tényezői. Ez azt jelenti, hogy az y = f (x) / g (x) függvényben, bár (x-3) meg kell szüntetni, a g (x) = 0 nevező nincs megadva, ha x = 3. Azt is nem definiáljuk, ha x = 7. Ezért van egy lyuk x = 3. és csak y = f (x) / g (x) nulla értéke 4.
A függőleges vonalvizsgálatot arra használjuk, hogy meghatározzuk, hogy valami funkció-e, ezért miért használunk egy vízszintes vonalvizsgálatot egy inverz függvényhez, szemben a függőleges vonalvizsgálattal?
Csak a vízszintes vonalpróbát használjuk annak meghatározására, hogy egy függvény inverze valójában egy funkció. Miért van: Először is meg kell kérdezned magadtól, hogy egy függvény inverze, ahol x és y van kapcsolva, vagy egy függvény, amely szimmetrikus az eredeti függvényrel a vonalon, y = x. Tehát igen, a függőleges vonal tesztet használjuk annak megállapítására, hogy valami valamilyen funkció. Mi az a függőleges vonal? Nos, ez az egyenlet x = néhány s