Válasz:
Az autó sebessége
Magyarázat:
Ban ben
Ban ben
hüvelyk
Az autó sebessége
Tegyük fel, hogy két autó kipróbálásakor egy autó 248 mérföldet utazik ugyanabban az időben, amikor a második autó 200 mérföldet utaz. Ha egy autó sebessége 12 kilométer / óra gyorsabb, mint a második autó sebessége, hogyan találja meg mindkét autó sebességét?
Az első autó s_1 = 62 mi / óra sebességgel halad. A második autó s_2 sebességgel utazik = 50 mi / óra. Legyen t az az idő, ameddig az autók utaznak s_1 = 248 / t és s_2 = 200 / t Azt mondják: s_1 = s_2 + 12 Ez 248 / t = 200 / t + 12 rArr 248 = 200 + 12t rArr 12t = 48 rArr t = 4 s_1 = 248/4 = 62 s_2 = 200/4 = 50
Az áram sebességének megállapítása. A tudós egy lapátkereket helyez a patakba, és figyelemmel kíséri azt a sebességet, amellyel az elfordul. Ha a lapátkerék 3,2 m-es sugarú, és 100 fordulat / perc fordulatban forog, hogyan találja meg a sebességet?
Az áram sebessége = 33,5ms ^ -1 A kerék sugara r = 3,2 m A forgás n = 100 "rpm" A szögsebesség omega = 2pin / 60 = 2 * pi * 100/60 = 10,47 rads ^ -1 Az áram sebessége v = omegar = 10,47 * 3,2 = 33,5ms ^ -1
A víz szivárog ki egy fordított kúpos tartályból 10 000 cm3 / perc sebességgel, ugyanakkor a tartályba állandó sebességgel szivattyúzunk vizet. Ha a tartály magassága 6 m és az átmérő a tetején 4 m és ha a vízszint 20 cm / perc sebességgel emelkedik, amikor a víz magassága 2 m, hogyan találja meg azt a sebességet, amellyel a vizet szivattyúzzák a tart
Legyen V a tartályban lévő víz térfogata cm ^ 3-ban; legyen h a víz mélysége / magassága, cm-ben; és legyen a víz felszínének sugara (tetején), cm-ben. Mivel a tartály fordított kúp, így a víz tömege is. Mivel a tartály magassága 6 m, és a sugár a 2 m tetejénél hasonló, a hasonló háromszögek azt jelzik, hogy fr {h} {r} = fr {6} {2} = 3 úgy, hogy h = 3r. Az invertált kúp térfogata ezután V = fr {1} {3} és r ^ {2} h = r r {{}}. Most megkülönb&