Oldja meg az y-t, ha ln (y-1) = X + lny?

Oldja meg az y-t, ha ln (y-1) = X + lny?
Anonim

Válasz:

# Y = 1 / (1-e ^ x) #

Magyarázat:

Nekünk van

#ln (y-1) -ln (y) = X #

így

#ln ((y-1) / y) = X #

# (Y-1) / y = e ^ x #

# 11 / y = e ^ x #

# 1-e ^ x = 1 / y #

így

# Y = 1 / (1-e ^ x) #

Válasz:

# Y = (1 / (1-e ^ x)) #

Magyarázat:

A logaritmus tulajdonságának használata

#ln (a / b) = ln (a) -ln (b) #

#ln (y-1) -ln (y) = X #

#ln ((y-1) / y) = X #

Most vegye az antilogot

# ((Y-1) / y) = e ^ x #

Egyszerűsítse a fenti egyenletet

# Y = (1 / (1-e ^ x)) #