Egy bizonyos radioaktív anyag felezési ideje 75 nap. Az anyag kezdeti mennyisége 381 kg. Hogyan írsz egy exponenciális függvényt, amely modellezi az anyag bomlását és mennyi radioaktív anyag marad 15 nap után?
Félidő: y = x * (1/2) ^ t x kezdeti összeggel, t "idő" / "félélet" és y végső összegként. A válasz megkereséséhez csatlakoztassa a következő képletet: y = 381 * (1/2) ^ (15/75) => y = 381 * 0.87055056329 => y = 331.679764616 A válasz körülbelül 331,68
Egy bizonyos radioaktív anyag felezési ideje 85 nap. Az anyag kezdeti mennyisége 801 kg. Hogyan írsz egy exponenciális függvényt, amely modellezi az anyag bomlását és mennyi radioaktív anyag marad 10 nap után?
Legyen m_0 = "Kezdeti tömeg" = 801 kg "a" t = 0 m (t) = "Tömeg időben t" "Az exponenciális függvény", m (t) = m_0 * e ^ (kt) ... (1) "ahol" k = "állandó" "Félidő" = 85 nap => m (85) = m_0 / 2 Most, amikor t = 85 nap, akkor m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) Az m_0 és e ^ k értékek beillesztése (1) -be m (t) = 801 * 2 ^ (- t / 85) Ez az a függvény, amely exponenciális formában is írható: m (t) = 801
A diákjegyek ára 6,00 dollár volt kevesebb, mint az általános belépőjegyek. A diákjegyekre összegyűjtött pénz összege 1800 dollár volt, az általános belépőjegyek pedig 3000 dollár. Mi volt az általános belépőjegy ára?
Amit látok, ez a probléma nem rendelkezik egyedülálló megoldással. Hívja fel egy felnőtt jegy x költségét és egy diákjegy ára y. y = x - 6 Most elengedjük, hogy az eladott jegyek száma a diákok számára legyen b, a felnőtteknek pedig b. ay = 1800 bx = 3000 3 egyenletből álló rendszert hagyunk 4 változóval, amelyeknek nincs egyedülálló megoldása. Talán a kérdés hiányzik egy információ? Kérlek tudasd velem. Remélhetőleg ez segít!