Mi az x, ha 3ln2 + ln (x ^ 2) + 2 = 4?

Mi az x, ha 3ln2 + ln (x ^ 2) + 2 = 4?
Anonim

Válasz:

# x = e ^ {1-3 / 2 ln (2)} #

Magyarázat:

Szétválasztja a kifejezést, beleértve a #x#:

#ln (x ^ 2) = 4-2-3ln (2) = 2-3ln (2) #

Használja a logaritmus tulajdonságait #ln (a ^ b) = milliárd (a) #:

# 2ln (x) = 2-3ln (2) #

Szétválasztja a kifejezést, beleértve a #x# újra:

#ln (x) = 1-3 / 2 ln (2) #

Vegyük mindkét kifejezés exponenciális értékét:

# e ^ {ln (x)} = e ^ {1-3 / 2 ln (2)} #

Tekintsük azt a tényt, hogy az exponenciális és logaritmus inverz függvények, és így # e ^ {ln (x)} = x #

# x = e ^ {1-3 / 2 ln (2)} #

Válasz:

#X = + - (esqrt2) / 4 #

Magyarázat:

# 1 "" 3ln2 + ln (x ^ 2) + 2 = 4 #

levon #2# mindkét oldalról.

# 2 "" 3ln2 + ln (x ^ 2) + 2-2 = 4-2 #

# 3 "" 3ln2 + ln (x ^ 2) = 2 #

Ingatlan: # Alog_bm = log_bm ^ a #

# 4 "" ln2 ^ 3 + ln (x ^ 2) = 2 #

# 5 "" ln8 + ln (x ^ 2) = 2 #

Ingatlan: # Log_bm + log_bn = log_b (Mn) #

# 6 "" ln (8x ^ 2) = 2 #

# 7 "" log_e (8x ^ 2) = 2 #

Konvertálás exponenciális formába.

# 8 "" hArre ^ 2 = 8x ^ 2 #

Oszd meg mindkét oldalt #8#.

# 9 "" e ^ 2/8 = x ^ 2 #

levon # E ^ 2/8 # mindkét oldalról.

# 10 "" x ^ 2-e ^ 2/8 = 0 #

Két négyzet különbsége.

# 11 "" (x + sqrt (e ^ 2/8)) (x-sqrt (e ^ 2/8)) = 0 #

# 12 "" (x + e / (2sqrt2)) (x-e / (2sqrt2)) = 0 #

Racionalizálására.

# 13 "" (x + (esqrt2) / 4) (x- (esqrt2) / 4) = 0 #

Ebből adódóan: #COLOR (kék) (x = + - (esqrt2) / 4) #