Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Az A és B vonal merőleges. Az A vonal lejtése -0,5. Mi az értéke x, ha a B vonal lejtése x + 6?
X = -4 Mivel a vonalak merőlegesek, tudjuk, hogy a két termék terméke -1-es gradiens, így m_1m_2 = -1 m_1 = -0,5 m_2 = x + 6 -0,5 (x + 6) = - 1 x + 6 = -1 / -0,5 = 1 / 0,5 = 2 x = 2-6 = -4
Az A és B vonal párhuzamos. Az A vonal lejtése -2. Mi az x értéke, ha a B vonal lejtése 3x + 3?
X = -5 / 3 Legyen m_A és m_B az A és B sorok gradiensei, ha A és B párhuzamosak, akkor m_A = m_B Tehát tudjuk, hogy -2 = 3x + 3 Újra kell átrendeznünk, hogy x - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Bizonyítás: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A