Válasz:
Magyarázat:
Mivel egyszerűbb kezelni csak az egyiket
Most trigonometrikus helyettesítést kell végezni. Hiperbolikus triggerfunkciókat fogok használni (mivel a secant integrál általában nem túl szép). Az alábbi identitást szeretnénk használni:
Ehhez szeretnénk
Az integráláshoz
Most használhatjuk az identitást
Most az identitást használjuk:
Egyértelmű u-helyettesítést tehetünk
Most meg kell szüntetnünk a helyettesítést. Meg tudjuk oldani
Ez adja meg:
Az állatkertben két szivárgó víztartály található. Egy víztartály 12 liter vizet tartalmaz, és 3 g / óra állandó sebességgel szivárog. A másik 20 g vizet tartalmaz, és 5 g / óra állandó sebességgel szivárog. Mikor lesz a két tartály azonos mennyiségű?
4 óra. Az első tartály 12 g-ot veszít, és 3g / óra vesztes. A második tartály 20g-os és 5g / óra vesztes Ha az időt t-vel ábrázoljuk, akkor ezt egyenletként írhatjuk: 12-3t = 20-5 t 20-5 t => 2t = 8 => t = 4: 4 óra. Ekkor mindkét tartály egyszerre kiürül.
Mi az a számlálható / számíthatatlan főnév? Tudom, hogy kevesebbet használsz a számíthatatlan főneveknél és kevesebb a számlálható főneveknél, de mi van néhány példa mindegyikre?
Lásd az alábbi választ: Ez a különbség a számlálható és a számíthatatlan főnevek között: A számlálható főnevek a nevük szerint számíthatók. Általában többes számuk van. rarrExamples: macska / macskák, bőrönd / bőröndök, ceruza / ceruzák ... Számíthatatlan főnevek a főnevek, amelyek nem számíthatók fel. Általában nincs többes számuk, és elvontak lehetnek (azaz nem kézzelfoghatóak - nem érezhetőek). rarrExamples:
Hogyan integrálható az int [6x ^ 2 + 13x + 6] / [(x + 2) (x + 1) ^ 2] dx részleges frakciókkal?
4ln (abs (x + 2)) + 2ln (abs (x + 1)) + (x + 1) ^ - 1 + C Tehát először ezt írjuk: (6x ^ 2 + 13x + 6) / ((x +2) (x + 1) ^ 2) = A / (x + 2) + B / (x + 1) + C / (x + 1) ^ 2 Ezen kívül: (6x ^ 2 + 13x + 6 ) / ((x + 2) (X + 1) ^ 2) = A / (x + 2) + (B (x + 1) + C) / (X + 1) ^ 2 = (A (x + 1 ) ^ 2 + (x + 2) (B (x + 1) + C)) / ((x + 2) (x + 1) ^ 2) 6x ^ 2 + 13x + 6 = A (x + 1) ^ 2+ (x + 2) (B (x + 1) + C) Az x = -2 használatával: 6 (-2) ^ 2 + 13 (-2) + 6 = A (-1) ^ 2 A = 4 6x ^ 2 + 13x + 6 = 4 (x + 1) ^ 2 + (x + 2) (B (x + 1) + C) Ezután az x = -1 használatával: 6 (-1) ^ 2 + 13 (-1)