Válasz:
Magyarázat:
Legyen az első kiválasztás valószínűsége
Legyen a második kiválasztás valószínűsége
8 fiú + 6 lány
Így
7 fiú + 6 lány
Így
Tegyük fel, hogy egy családnak három gyermeke van. Keresse meg annak a valószínűségét, hogy az első két gyermek született. Mi a valószínűsége annak, hogy az utolsó két gyermek lány?
1/4 és 1/4 Kétféleképpen dolgozhatunk ki. 1. módszer. Ha egy családnak 3 gyermeke van, akkor a különböző fiú-lánykombinációk száma 2 x 2 x 2 = 8 Ezek közül kettő kezdődik (fiú, fiú ...) A harmadik gyermek lehet fiú vagy egy lány, de nem számít, hogy melyik. Tehát P (B, B) = 2/8 = 1/4 módszer 2. Meg tudjuk állapítani, hogy a két gyermek fiú valószínűsége: P (B, B) = P (B) xx P (B) = 1/2 xx 1/2 = 1/4 Pontosan ugyanúgy, mint a valószínűsége. az utols
Hat fiút és kilenc lányt neveztek az osztályodból egy kalapba. Mi a valószínűsége annak, hogy az első két választott fiú egy lány lesz, akit egy lány követ?
9/35 Összesen 6 + 9 = 15 név van. A valószínűsége, hogy az első név egy fiú lesz, 6/15 = 2/5. Aztán 5 fiú neve és 9 lány neve marad. Tehát a valószínűsége, hogy a második név egy lány lesz, 9/14. Tehát a fiú neve és a lány neve a következő: 2/5 * 9/14 = 18/70 = 9/35
A feljegyzések azt mutatják, hogy a valószínűsége 0,00006, hogy egy autónak egy alagútban egy gumiabroncsja lesz, hogy egy bizonyos alagútban vezethessen. Keresse meg annak a valószínűségét, hogy a csatornán áthaladó legalább 10 000 autónak lapos gumiabroncsai lesznek?
Először egy binomiális: X ~ B (10 ^ 4,6 * 10 ^ -5), még akkor is, ha a p rendkívül kicsi, n hatalmas. Ezért ezt a normális használatával közelíthetjük meg. X ~ B (n, p), Y ~ N (np, np (1-p)) esetében Tehát Y ~ N (0.6,0.99994) van, P (x> = 2), normál használatával korrigálva határok, P (Y> = 1,5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1,5-0,6) / sqrt (0,99994) ~ ~ 0,90 P (Z> = 0,90) = 1-P (Z = 0,90) Z-táblázatot használva megállapítjuk, hogy z = 0,90 P (Z = 0,90) = 0,8159 P (Z> = 0,90