Válasz:
Magyarázat:
A két pont között elhaladó vonal lejtőjének megtalálásához használjuk a gradiens képletet:
Hol
Ne feledje, hogy a válasz ugyanaz lesz, függetlenül attól, hogy melyik ponton hívja az első pontot
A kérdésben megadott adatok bevitelével megkaphatjuk a választ:
Gregory egy ABCD téglalapot húzott egy koordináta síkra. Az A pont (0,0). A B pont (9,0). A C pont (9, -9). A D pont (0, -9). Keresse meg az oldalsó CD hosszát?
Oldalsó CD = 9 egység Ha figyelmen kívül hagyjuk az y koordinátákat (az egyes pontok második értéke), könnyű megmondani, hogy mivel az oldalsó CD x = 9-nél kezdődik, és az x = 0, az abszolút érték 9: | 0 - 9 | = 9 Ne feledje, hogy az abszolút értékekre vonatkozó megoldások mindig pozitívak. Ha nem érti, miért van ez, akkor a következő képletet is használhatja: P_ "1" (9, -9) és P_ "2" (0, -9 ) A következő egyenletben P_ "1" C és P_ "2"
Milyen egyenlet van a pont-lejtés formában és a lejtés elfogó formájában a megadott lejtésnél = -3, amely áthalad (2,6)?
Y-6 = -3 (x-2), y = -3x + 12 "" a "szín (kék)" pont-lejtés formában lévő vonal egyenlete. • szín (fehér) (x) y-y_1 = m (x-x_1) "ahol m a meredekség és a" (x_1, y_1) "egy sor a" "egyenletben egy" "színben (kék) "lejtő-elfogás". • szín (fehér) (x) y = mx + b "ahol m a lejtő és b az y-elfogás" "itt" m = -3 "és" (x_1, y_1) = (2,6) rArry-6 = -3 (x-2) larrcolor (piros) "pont-meredekség formában" rArry-6 = -3x + 6 rArry = -3x + 12 cl
Az A pont (-2, -8), a B pont pedig (-5, 3). Az A pontot (3pi) / 2 forgatjuk az óramutató járásával megegyező irányban az eredet körül. Melyek az A pont új koordinátái és milyen mértékben változott az A és B pont közötti távolság?
Legyen A, (r, theta) kezdeti poláris koordinátája Az A kezdeti derékszögű koordinátája (x_1 = -2, y_1 = -8) Így 3pi / után írhatunk (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta). 2 az óramutató járásával megegyező irányban az A új koordinátája x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 A kezdeti távolsága B-től (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 végső távolság az A új pozíci