#f (x) = sin ^ 3x #, # D_f = RR #
#G (x) = sqrt (3x-1) #, # Dg = 1/3, + oo) #
#D_ (köd) = {## # AAx#ban ben##RR: ##x##ban ben## # D_g, #G (X) ##ban ben##D_f} #
#X> = 1/3-#, #sqrt (3x-1) ##ban ben## RR # #-># #x##ban ben## 1/3, + oo) #
# # AAx#ban ben## 1/3, + oo) #,
- # (Köd) '(x) = f' (g (x)) g '(x) = f' (sqrt (3x-1)) ((3x-1) ') / (2sqrt (3x-1)) #
#f '(x) = 3sin ^ 2x (sinx)' = 3sin ^ 2xcosx #
így # (Köd) '(x) = sin ^ 2 (sqrt (3x-1)) cos (sqrt (3x-1)) * 9 / (2sqrt (3x-1)) #