Válasz:
#-3#
Magyarázat:
bővülő
# (X + x_1) (x + x_2) (x + x_3) (x + x_4) # és összehasonlítjuk
# {(x_1x_2x_3x_4 = -1), (x_1 x_2 x_3 + x_1 x_2 x_4 x_1 x_3 x_4 + x_2 x_3 x_4 = 4), (x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + x_3 x_4 = -3), (x_1 + x_2 + x_3 + x_4 = -2):} #
Most elemezzük
# x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + x_3 x_4 = x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 + (x_2x_3 + x_1x_4) #
kiválasztása # X_1x_4 = 1 # következik # x_2x_3 = -1 # (lásd az első feltételt)
ennélfogva
# x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 + (x_2x_3 + x_1x_4) = -3 # vagy
# x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 = -3- (x_2x_3 + x_1x_4) = - 3 #