Válasz:
Az új kötet
Magyarázat:
Kezdjük az ismert és ismeretlen változóink azonosításával.
Az első kötetünk
A választ Charles-törvény útján szerezhetjük be, amely azt mutatja, hogy közvetlen kapcsolat van hangerő és hőmérséklet mindaddig, amíg a nyomás és a mólok száma változatlanok maradnak.
A használt egyenlet
# V_1 / T_1 = V_2 / T_2 #
ahol a számok
Most már csak az egyenletet és a dugót és a chugot rendezzük át.
# V_2 = (T_2 * V_1) / (T_1) #
# V_2 = (300 cancel ("K") * "7 L") / (420 törlés ("K")) #
# V_2 = "5 L" #
Ui A Kelvin-skála használatakor nem helyezi el a fokozatot. Csak írsz K.
A zárt gáz térfogata (állandó nyomáson) közvetlenül az abszolút hőmérsékleten változik. Ha a neongáz 3,46 l-es mintájának nyomása 302 ° K-on 0,926 atm, mi lenne a térfogat 338 ° C hőmérsékleten, ha a nyomás nem változik?
3.87L Érdekes gyakorlati (és nagyon gyakori) kémiai probléma egy algebrai példának! Ez nem biztosítja a tényleges Ideal Gas Law egyenletet, de megmutatja, hogy annak egy része (Charles 'Law) származik a kísérleti adatokból. Algebrai módon azt mondják, hogy a sebesség (a vonal lejtése) állandó az abszolút hőmérséklet (a független változó, általában az x-tengely) és a térfogat (függő változó, vagy y-tengely) tekintetében. A helyesség érdekében
A 12 literes térfogatú tartály 210 K hőmérsékletű gázot tartalmaz. Ha a gáz hőmérséklete 420 K-ra változik nyomásváltozás nélkül, akkor mi legyen a tartály új térfogata?
Csak alkalmazzunk Charle törvényét egy ideális gáz állandó nyomására és masjára, így van, V / T = k, ahol k állandó. Tehát a kezdeti V és T értékeket kapjuk, k = 12/210 , ha a 420K hőmérséklet miatt új térfogat V ', akkor megkapjuk, (V') / 420 = k = 12/210 Tehát, V '= (12/210) × 420 = 24L
A 14 literes térfogatú tartály 160 ^ oC hőmérsékletű gázt tartalmaz. Ha a gáz hőmérséklete 80 ^ o K-ra változik nyomásváltozás nélkül, akkor mi legyen a tartály új térfogata?
7 {L} Feltételezve, hogy a gáz ideális, ezt néhány különböző módon lehet kiszámítani. A Kombinált Gáztörvény megfelelőbb, mint az ideális gázjog, és általánosabb (így ismerősebbek lesznek a jövőbeni problémáknál gyakrabban), mint Charles 'törvénye, ezért fogom használni. fr {P_1 V_1} {T_1} = fr {P_2 V_2} {T_2} V_2 V_2 = Frac {P_1 V_1} {T_1} Frac {T_2} {P_2} Átalakítás az arányos változók nyilvánvalóvá tételéhez V_2 = frac