Válasz:
7/11
Magyarázat:
A másikra merőleges vonal meredeksége a referenciavonal lejtőjének fordított értéke. Az általános vonali egyenlet y = mx + b, így az erre merőleges vonalak halmaza y = - (1 / m) x + c.
y = mx + b Számítsuk ki a meredekséget, m az adott pontértékek közül, oldjuk meg a b pontot az egyik pontérték használatával, és ellenőrizzük a megoldást a többi pontértékkel.
Egy vonalat a vízszintes (x) és a függőleges (y) pozíciók közötti változás arányának tekinthetjük. Tehát bármely olyan pont esetében, amelyet a derékszögű (síkbeli) koordináták, mint amilyenek ebben a problémában vannak megadva, egyszerűen beállítod a két változást (különbséget), majd az arányt a meredekség eléréséhez, m.
„Y” függőleges különbség = y2 - y1 = 14 - 3 = 11
Vízszintes különbség „x” = x2 - x1 = -14 - -7 = -7
Ratio = „emelkedés futás közben”, vagy függőleges vízszintes = 11 / -7 = -11/7 a lejtőn, m.
Egy vonal általános formája az y = mx + b, vagy a függőleges helyzet a meredekség és a vízszintes helyzet eredménye, x, valamint az a pont, ahol a vonal keresztezi (elfogja) az x tengelyt (a vonal, ahol z mindig nulla)) Tehát, miután kiszámította a lejtőt, a két pont ismertethető az egyenletben, így csak a b 'elfogás' ismeretlen.
3 = (-11/7) (- 7) + b; 3 = 11 + b; -8 = b
Így az utolsó egyenlet y = - (11/7) x - 8
Ezután ellenőrizzük ezt a másik ismert pont helyettesítésével:
14 = (-11/7) (- 14) - 8; 14 = 22 - 8; 14 = 14 JÓ!
SO, ha eredeti egyenletünk y = - (11/7) x - 8, akkor az arra merőleges vonalak sora 7/11 lesz.
Egy vonal egyenlete 2x + 3y - 7 = 0, talál: - (1) a vonal (2) lejtése, az adott vonalra merőleges vonal egyenlete, és az x-y + 2 = vonal metszéspontján áthaladva. 0 és 3x + y-10 = 0?
-3x + 2y-2 = 0 szín (fehér) ("ddd") -> szín (fehér) ("ddd") y = 3 / 2x + 1 Első rész sok részletben, amely bemutatja az első elvek működését. Ha egyszer használják ezeket, és a parancsikonokat használják, akkor sokkal kevesebb sort használunk. szín (kék) ("Határozza meg a kezdeti egyenletek elkapását") x-y + 2 = 0 "" ....... egyenlet (1) 3x + y-10 = 0 "" .... egyenlet ( 2) Kivonja az x-t az Eqn (1) mindkét oldaláról, megadva a -y + 2 = -x-t Mindkét olda
Az n vonal áthalad a (6,5) és (0, 1) pontokon. Mi a k vonal y-metszete, ha a k vonal merőleges az n vonalra és áthalad a ponton (2,4)?
A 7. ábra a k vonal y-metszete. Először, keressük meg az n vonal vonalát. (1-5) / (0-6) (-4) / - 6 2/3 = m Az n vonal lejtése 2/3. Ez azt jelenti, hogy a k vonal vonalának meredeksége, amely merőleges az n vonalra, a 2/3 vagy -3/2 negatív reciprok. Tehát az eddigi egyenletünk: y = (- 3/2) x + b A b vagy az y-metszés kiszámításához csak csatlakoztassa (2,4) az egyenletbe. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Az y-elfogás tehát 7
Mekkora az egyenlet az (-1,1) -en áthaladó és az alábbi pontokon áthaladó vonalra merőleges vonal: (13,1), (- 2,3)?
15x-2y + 17 = 0. A P (13,1) & Q (-2,3) pontokon áthaladó vonal m 'értéke m' = (1-3) / (13 - (- 2)) = - 2/15. Tehát, ha a lejtőn a reqd. a vonal m, mint a reqd. A vonal a PQ vonalhoz tartozó bot, mm '= - 1 rArr m = 15/2. Most használjuk a Slope-Point Formulát a reqd számára. vonal, amelyről ismert, hogy áthalad a ponton (-1,1). Így az eqn. a reqd. vonal, y-1 = 15/2 (x - (- 1)), vagy 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.