Mi az (4x ^ 2-1) / (2x ^ 2-5x-3) * (x ^ 2-6x + 9) / (2x ^ 2 + 5x-3), egyszerűsítve?

Mi az (4x ^ 2-1) / (2x ^ 2-5x-3) * (x ^ 2-6x + 9) / (2x ^ 2 + 5x-3), egyszerűsítve?
Anonim

Válasz:

# (X-3) / (x + 3) #

Magyarázat:

Először az összes polinomot befolyásolja, és megkapja:

# 4x ^ 2-1 = (2x-1) (2x + 1) #

# X ^ 2-6x + 9 = (X-3) ^ 2 #

Nézzük meg a nullákat

1) # 2x ^ 2-5x-3 # és 2) # 2x ^ 2 + 5x-3 # a négyzetes képlet szerint:

# X = (5 + -sqrt (25 + 24)) / 4 = (5 + -7) / 4 #

# X_1 = -1 / 2; x_2 = 3 #

Azután

1) # 2x ^ 2-5x-3 = 2 (x + 1/2) (X-3) = (2x + 1) (X-3) #

#X = (- 5 + -sqrt (25 + 24)) / 4 = (- 5 + -7) / 4 #

# X_1 = -3; x_2 = 1/2 #

Azután

2) # 2x ^ 2 + 5x-3 = 2 (x + 3) (x-1/2) = (x + 3) (2x-1) #

Ezután az adott kifejezés:

# (Megszünteti ((2x-1)) megszünteti ((2x + 1))) / (megszünteti ((2x + 1)) megszünteti ((X-3))) * ((X-3) ^ cancel2) / ((x + 3) megszünteti ((2x-1))) #

# = (X-3) / (x + 3) #