Válasz:
Magyarázat:
Csak a négy frakcióból
Írja be a másik 3 frakciót egyenértékű frakcióknak, amelyek közös nevezője
Ezért rendben:
Ha százalékra konvertálja őket:
Négy diák van, mindegyik különböző magasságban, akik véletlenszerűen elrendezhetők egy sorban. Mekkora a valószínűsége annak, hogy a legmagasabb hallgató első sorban lesz, és a legrövidebb diák utolsó sorban lesz?
1/12 Feltételezve, hogy van egy sor elülső és vége (azaz csak a vonal egyik végét lehet osztályozni) A valószínűség, hogy a legmagasabb hallgató 1. sorban = 1/4 Most, a legrövidebb diák valószínűsége a 4. sorban = 1/3 (Ha a legmagasabb személy az első sorban van, akkor nem is lehet utolsó) A teljes valószínűség = 1/4 * 1/3 = 1/12 Ha nincs beállított eleje és vége sor (vagyis mindkét vég lehet először), akkor csak az a valószínűség, hogy rövid, mint az egyik vég
Ez a kérdés az, hogy a 11 évesek a frakciókat használják a válasz megadására ...... meg kell találniuk, hogy 1/3-a 33 3/4 ..... nem akarok válaszolni ..... hogy felállítsuk a problémát, hogy segítsek neki ... hogyan osztja meg a frakciókat?
11 1/4 Itt nem osztja meg a frakciókat. Te valójában szaporodsz. A kifejezés 1/3 * 33 3/4. Ez 11 1/4. Ennek egyik módja az lenne, ha 33 3/4-t nem megfelelő frakcióvá alakítanánk. 1 / cancel3 * cancel135 / 4 = 45/4 = 11 1/4.
A feljegyzések azt mutatják, hogy a valószínűsége 0,00006, hogy egy autónak egy alagútban egy gumiabroncsja lesz, hogy egy bizonyos alagútban vezethessen. Keresse meg annak a valószínűségét, hogy a csatornán áthaladó legalább 10 000 autónak lapos gumiabroncsai lesznek?
Először egy binomiális: X ~ B (10 ^ 4,6 * 10 ^ -5), még akkor is, ha a p rendkívül kicsi, n hatalmas. Ezért ezt a normális használatával közelíthetjük meg. X ~ B (n, p), Y ~ N (np, np (1-p)) esetében Tehát Y ~ N (0.6,0.99994) van, P (x> = 2), normál használatával korrigálva határok, P (Y> = 1,5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1,5-0,6) / sqrt (0,99994) ~ ~ 0,90 P (Z> = 0,90) = 1-P (Z = 0,90) Z-táblázatot használva megállapítjuk, hogy z = 0,90 P (Z = 0,90) = 0,8159 P (Z> = 0,90